
   

 

  

 

 

 

Groundwater Data Utilities 
 

 

Part B: Program Descriptions 

(See Part C for a description of programs pertaining to unstructured grid models.) 

 

 

 

 

 

 

 

 

 

 

 

Watermark Numerical Computing 

March, 2016



Preface  i 

 

  

PREFACE 

Part B of the manual for the Groundwater Data Utilities contains individual program 

descriptions. Programs are discussed in alphabetical order.  

See also part C of the manual to the Groundwater Data Utilities. This contains 

programs written in support of unstructured grid models. The PLPROC program (that 

has its own separate manual) provides further support for unstructured grid models. 

Refer to Part A of the Groundwater Data Utilities manual for an overview of the 

utilities, a description of the file types used by them, and for a discussion of a number 

of common groundwater data processing tasks that can be accomplished using them. 

I wish to gratefully acknowledge support that was provided to me for the writing of 

many of the utilities documented herein. In particular:- 

¶ The original set of 30 utilities was developed as part of a project funded by the 

Australian Land and Water Resources Research and Development Corporation 

(LWRRDC) and by the Queensland Department of Natural Resources 

(QDNR).  

¶ The development of utilities which support the interface between PEST and 

the MODFLOW-2005 adjoint process developed by Tom Clemo was 

supported by a contract with Boise State University under EPA Grant X-

96004601-0. So too were utilities supporting the use of calibration-constrained 

Monte-Carlo as a tool for model predictive uncertainty analysis. 

¶ GENREG and PARM3D were developed under contract from the Madison 

Wisconsin office of USGS. 

¶ RSM2SRF, RDAT2TAB, FAC2RSM and PPK2FACR were developed under 

contract from the South Florida Water Management District. 

¶ Other utilities (including some of the unstructured grid utilities) were written 

with support from the National Centre for Groundwater Research and 

Training, Flinders University, Australia. 

I wish to also acknowledge continued assistance provided by S. S. Papadopoulos and 

Associates. Assistance from EMS-I is also gratefully acknowledged and appreciated. 

John Doherty 



Preface  ii  

 

  

ALPHABETICAL LISTING OF GROUNDWATER DATA UTILITIES  

(See Part C of the manual for the Groundwater Data Utilities for listing and 

documentation of unstructured grid utilities.)  

adjobs Adjusts observation weights for different observation groups in a PEST 

control file according to user-defined formulae. 

arr2bore Undertakes spatial interpolation from a single array to a set of points. 

arrayobs Facilitates the introduction of model outputs comprised of 

MODFLOW/MT3D-compatible real arrays into a PEST parameter 

estimation process. 

arrdet Lists the contents of a MODFLOW or MT3D unformatted 

head/drawdown/concentration output file. 

asenproc Reads a ñdistributed parameter sensitivity fileò written by the adjoint state 

version of MODFLOW; formulates sensitivities for PEST parameters and 

writes them to a PEST ñexternal derivatives fileò. 

bud2hyd Extracts flow data from a MODFLOW unformatted cell-by-cell flow term 

file. Rewrites this data in a form suitable for plotting against time. 

bud2smp Extracts flow data from a MODLFOW unformatted cell-by-cell flow term 

file. Rewrites this data in bore sample file format. 

bud2smp1 Similar to BUD2SMP, but easier to use where a model has a large number 

of layers. 

conc2elev Computes the elevation of the freshwater/saltwater interface on the basis of 

a sequence of concentration arrays. 

dar2smp Translates system states computed by a FEFLOW model to bore sample file 

format. 

elev2conc Computes a sequence of initial concentration arrays (one for each model 

layer) based on a user-supplied freshwater/saltwater interface elevation 

array, and (spatially varying) thickness of the interface. 

elev2conc1 Similar to elev2conc, but computes ñzero flow headò arrays as well. 

fac2fefl Uses PPKFAC_FEFL-generated kriging factors to modify a FEFLOW 

model input data file on the basis of spatial interpolation from a set of pilot 

points. 

fac2fem Uses ppk2fac-generated kriging factors to produce a MicroFEM input file 

on the basis of spatial interpolation from a set of pilot points. 

fac2g Complements PPK2FACG. Performs interpolation to a set of points, 

recording interpolated values in a single column file. 



Preface  iii  

 

  

fac2mf2k Modifies an existing set of MODFLOW-2000 input files, replacing 

parameter cited in that file with pilot-point-based parameters (often a first 

step in pilot-point-based model calibration). 

fac2real Uses PPKFAC-generated kriging factors to produce a MODFLOW-

compatible real array on the basis of spatial interpolation from a set of pilot 

points. 

fac2real3d Uses PPK2FAC3D-generated kriging factors to produce a set of 

MODFLOW-compatible real arrays through spatial interpolation from a set 

of three-dimensional pilot points. 

fac2rsm Uses PPKFACR-generated kriging factors to produce an RSM model input 

data file on the basis of spatial interpolation from a set of pilot points. 

fem2smp Converts MicroFEM output to bore sample file format. 

fieldgen Generates a stochastic field in each zone of a model domain using the 

sequential Gaussian simulation method. 

genreal2srf Interpolates from a MODFLOW grid of arbitrary specifications to the nodes 

of a SURFER grid file. 

genreg Inserts prior information pertaining to many different types of regularisation 

into an existing PEST control file. 

getmularr Extracts arrays from MODFLOW/MT3D unformatted output files at user-

nominated simulation times and stores these arrays in separate formatted 

files. 

getmularr1 Extracts all arrays for a nominated simulation time from a 

MODFLOW/MT3D unformatted output file and writes these to another 

unformatted MODFLOW/MT3D output file. 

grid2arc Writes ARCINFO generate files of the active part of the finite-difference 

grid as defined by a user-supplied integer array. 

grid2bln Writes a SURFER blanking file of the active part of the finite-difference 

grid as defined by a user-supplied integer array. 

grid2dxf Writes a DXF file of the active part of the finite-difference grid as defined 

by a user-supplied integer array. 

grid2pt Tabulates  the coordinates of the cell centres of the finite-difference grid 

within an active window defined by a user-supplied integer array. 

int2mif Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-

compatible integer array. 

int2real Builds a MODFLOW/MT3D-compatible real array based on the contents of 

a MODFLOW/MT3D-compatible integer array. 



Preface  iv 

 

  

laydiff Evaluates head value differences in different layers based on contents of a 

bore sample file, bore coordinates file and bore listing file. 

logarray Evaluates the log (to base 10) of all elements of a real array. 

many2one Splits MODFLOW/MT3D-generated unformatted files comprised of 

multiple two-dimensional results arrays into individual 

formatted/unformatted files. 

mkmhobs Reads a bore sample file. Writes a MODFLOW 2005 heads observation file, 

as well as an instruction file to read a MODFLOW heads output data file 

and a ñPEST building block fileò containing pertinent fragments of a PEST 

control file. 

mod2array Reads a MODFLOW or MT3D input file, extracting real or integer arrays 

from that file and storing them in separate files. 

mod2obs Interpolates model-generated data to the same times and locations as those 

cited in a user-supplied bore sample file; writes another bore sample file.  

mod2smp Interpolates the information contained in an unformatted 

MODFLOW/MT3D output file to a set of user-specified bores, rewriting the 

bore-specific data as a bore sample file. 

mod2smpdiff Interpolates the information contained in an unformatted 

MODFLOW/MT3D output file to user-specified bores, calculating the 

difference or ratio between heads/concentrations at user-nominated pairs of 

bores. 

parcov Builds a geostatistically-based covariance matrix for a set of parameters 

whose coordinates are provided. 

parm3d Assists in the pilot-point parameterisation of a 3-d model domain where 

hydrogeologic units intersect grid layers. 

pestprep Automates construction of a PEST control file and PEST instruction file for 

a model comprised of MODFLOW and/or MT3D followed by MOD2OBS, 

or MODFLOW followed by BUD2SMP followed by SMP2SMP. 

pestprep1 Similar to PESTPREP. However provides extra flexibility in observation 

naming. 

pestprep2 Similar to PESTPREP1. However allows extra observation data to be added 

to an existing PEST input dataset. 

pmp2info Builds a bore information file from a bore pumping file, the former 

containing cumulative pumped volumes between two user-specified dates 

for a user-supplied list of bores. 

pmpchek Checks the integrity of the data contained in a bore pumping file. 



Preface  v 

 

  

ppcov Builds a covariance matrix pertaining to pilot point parameters based on one 

or a number of geostatistical structures. 

ppcov3d Builds a covariance matrix pertaining to three dimensional pilot point 

parameters based on one or a number of geostatistical structures. 

ppcov_sva Builds a covariance matrix pertaining to two-dimensional pilot point 

parameters under the assumption that anisotropy, and other geostatistical 

properties, can vary spatially. 

ppcov3d_sva Builds a covariance matrix pertaining to three-dimensional pilot point 

parameters under the assumption that anisotropy, and other geostatistical 

properties, can vary spatially. 

ppk2fac Calculates kriging factors for use in spatial interpolation from a set of pilot 

points to model grid cell centres. 

ppk2facf Calculates kriging factors for use in spatial interpolation from a set of pilot 

points to the nodes of a MicroFEM finite element mesh. 

ppk2facg Calculates kriging factors for interpolation from a set of unnamed points 

where the coordinates and zone numbers of the latter are arranged in three 

vertical columns.  

ppk2fac1 Identical to ppk2fac except for the fact that the regularisation data file 

which it writes is suitable for the use of ppkreg1. 

ppk2fac2 Identical to ppk2fac1 except for the fact that it prompts for a blanking 

radius. 

ppk2fac3 Contains improvements to ppk2fac[1-3] which allow it to work better in thin 

alluvial model domains, especially where complex tributary systems exist. 

ppk2fac3d Calculates kriging factors for interpolation from a set of three-dimensional 

pilot points to a series of MODFLOW-compatible real arrays. 

ppk2facr Calculates kriging factors for use in spatial interpolation from a set of pilot 

points to the nodes of an RSM mesh. Regularisation data file protocol is 

identical to that of PPK2FAC1. 

ppk2fac_fefl Calculates kriging factors for use in spatial interpolation from a set of pilot 

points to the elements of a FEFLOW mesh. Regularisation data file protocol 

is identical to that of PPK2FAC1. 

ppkreg Adds a ñprior informationò and ñregularisationò section to a PEST control 

file where parameterisation is based on pilot points. 

ppkreg1 Similar to ppkreg but more powerful in that it facilitates the use of both 

ñsmoothness regularisationò (same as ppkreg) and ñpreferred value 

regularisationò. 



Preface  vi 

 

  

ppmdef Builds a parameter definition file for the use of ASENPROC, linking 

distributed parameters as employed by the adjoint state version of 

MODFLOW to pilot point parameters. 

ppsamp Used in calibration-controlled Monte Carlo analysis. Samples stochastic 

fields at pilot point locations, interpolates between the pilot points and 

generates difference fields. 

pt2array Builds a MODFLOW-compatible real array; the value assigned to each 

array element is calculated from information pertaining to points lying 

within the respective element. 

ptingrid Locates the finite-difference cells in which arbitrary, user-supplied points 

lie; optionally provides the value of an integer or real array element 

pertaining to the cell containing each such point. 

qdig2dxf Translates the output of the shareware digitizing program, QDIGIT, into 

DXF format. 

qdig2xyz Translates the ñcontoursò output of QDIGIT to an ñxyzò data file. 

rdat2tab Reads an RSM element data file or index file. Adds mesh centroid 

coordinates to respective data elements and re-writes data in tabular format. 

real2int Builds a MODFLOW/MT3D-compatible integer array based on the contents 

of a MODFLOW/MT3D-compatible real array. 

real2mif Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-

compatible real array. 

real2srf Translates a MODFLOW/MT3D-compatible real array into a SURFER grid 

file. 

real2tab Translates a MODFLOW/MT3D-compatible real array into three-column 

real array table format. 

reparray ñPastesò a MODFLOW or MT3D compatible real array into an existing 

MODFLOW or MT3D input file. 

rotbln Rotates a SURFER blanking file about the top left corner of a finite-

difference grid so that the component elements of the file can be overlain 

over the grid when the latter has been rotated such that its row direction is 

oriented directly east. 

rotdat Rotates a data file about the top left corner of a finite-difference grid so that 

the component elements of the file can be overlain over the grid when the 

latter has been rotated such that its row direction is oriented directly east. 

rotdxf Rotates a DXF file about the top left corner of a finite-difference grid so 

that the component elements of the file can be overlain over the grid when 

the latter has been rotated such that its row direction is oriented directly 

east. 



Preface  vii  

 

  

rsm2srf Reads an RSM (also GMS) 2d mesh file. Writes files through which 

SURFER can plot mesh design, mesh outer boundary, as well as nodes and 

element centroids. 

section Interpolates the data contained in multiple MODFLOW-compatible real 

arrays to an arbitrary transect line through all or part of the finite-difference 

grid. 

smp2dat Extracts information from a bore sample file for a user-supplied list of bores 

at times corresponding to model output times, generating a bore data file 

from which PEST input files can be constructed using the PEST 

MODFLOW/MT3D Utilities. 

smp2hyd Rewrites the contents of a bore sample file for a user-specified list of bores 

in a form suitable for plotting borehole data against time. 

smp2info Time-interpolates the information contained in a bore sample file to a user-

specified date for a list of user-specified bores, thus writing a bore 

information file ready for access by commercial contouring software. 

smp2pm1 Re-writes the information in a bore sample file for user-selected bores as a 

PMWIN observation file. 

smp2pm2 Interpolates the information contained in a bore sample file to model output 

times, then writes the time-interpolated data as a PMWIN observation file. 

smp2smp Interpolates data contained within one bore sample file to the dates and 

times represented in another bore sample file. 

smpcal Calibrates one time-series dataset on the basis of another. 

smpchek Checks the integrity of a bore sample file. 

smpdiff Writes a new bore sample file in which differences are taken between 

successive values in an existing bore sample file, or between values in an 

existing file and a reference value. 

smptrend Writes a new bore sample file in which differences are taken between 

samples within an existing bore sample file and either the first sample for 

each bore in that file or a reference sample. However sampling is restricted 

to a yearly sample window. 

srf2real Re-writes a SURFER grid file as a MODFLOW-compatible real array. 

tab2int Generates a MODFLOW/MT3D-compatible integer array from an integer 

array stored within a GIS. 

tab2ndtf Reads a tabular file containing data for at least some nodes of an 

unstructured grid. Writes data in node data table format, so that it is 

readable by USG2VTK. 



Preface  viii  

 

  

tab2real Generates a MODFLOW/MT3D-compatible real array from a real array 

stored within a GIS. 

tabconv Translates between integer or real array table files using row/column 

identifier format and those using cell number identifier format. 

twoarray Combines two real arrays by addition, subtraction, multiplication, division 

and partial replacement. 

vertreg Adds ñvertical regularisationò prior information to a PEST control file 

where parameterisation is based on pilot points. 

zone2bln Writes a SURFER ñblankingò file of finite-difference grid zonation as 

defined by a user-supplied, MODFLOW-compatible integer array. 

zone2dxf Writes a DXF file of finite-difference grid zonation as defined by a user-

supplied, MODFLOW-compatible integer array. 

zone2var1 Computes a parameter variogram where parameterization is based on a large 

number of zones of piecewise constancy, and is defined through a 

ZONMDEF output file. Assists in undertaking ñvariogram regularisationò as 

described by Johnson et al (2007). 

zone2var2 Computes a parameter variogram much more quickly than ZONE2VAR1 

because it employs the results of the parameter search process undertaken 

by the latter program as read from a binary file written by it. 

zonmdef Assists in the preparation of input files for the use of PEST in conjunction 

with the MODFLOW-2005 adjoint process where parameters are based on a 

large number of zones of piecewise constancy. 



ADJOBS  1 

 

  

ADJOBS 

Function of ADJOBS 

ADJOBS is an acronym for ñadjust observationsò. ADJOBS reads an existing PEST 

control file. It allows the user to perform the following tasks:- 

¶ introduce new observation groups on the basis of observation names, and 

¶ calculate observation weights on the basis of observation values; different 

formulae can be used for weights calculation for different observation groups. 

ADJOBS is useful in preparing for a PEST run in conjunction with a model that 

produces one or a number of lengthy time series. In this capacity it is complementary 

to program PESTPREP. 

Using ADJOBS 

ADJOBS commences execution by prompting the user for the name of an existing 

PEST control file. Before being read by ADJOBS, this file should have been checked 

using PESTCHEK for, while ADJOBS will detect and report many of the types of 

errors that may be present in a PEST control file, its checking functionality is not as 

complete as that of PESTCHEK. 

ADJOBS then reads the PEST control file whose name has been supplied. It pays 

particular attention to the ñ* observation groupsò and ñ* observation dataò sections of 

this file. It counts the number of observations belonging to each observation group and 

then asks the user a series of questions pertaining to each such group. 

First:- 

Observation group "obsgp1" (245 observations belong to this group) ---- > 

  Do you wish to make any ad justments  [y/n]?:  

If you do not wish to subdivide this group into other observation groups, or to re-

assign weights to the members of this group, answer ñnò to the above prompt. 

However if you answer ñyò, ADJOBS will then prompt:- 

Divide group into subgro ups  [y/n]?  

Division into subgroups takes place on the basis of observation names. Thus if 

different observation types have different name types, these different observation 

types can be easily placed into different groups. For example if discharge observations 

are named dis001, dis002, dis003, etc. and pollutant concentrations are labelled 

conc001, conc002, conc003, etc, and both of these observation types presently belong 

to the same group, they can be separated on the basis of the first three letters of each 

of their observation names, with observations beginning with the letters ñdisò being 

assigned to one group and those beginning with the letters ñconò being assigned to 

another group. To achieve this, answer the following prompt with the number ñ3ò:- 



ADJOBS  2 

 

  

Use first n characters of observation name for group definition.  

Enter n:  

ADJOBS inspects the names of all of the observations belonging to the current group. 

It ascertains the number of groups into which the present group is now subdivided 

and, for each such group, it asks:- 

Observations in group "obsgp1" beginning with "dis" --- > 

Enter observation group name for these observations:  

Provide an observation group name as requested. Note that the user may, in response 

to this or any other prompt, press the ñeò key followed by return. This provides an 

ñescapeò mechanism, returning the user to the previous prompt. 

After a new observation group name has been supplied, ADJOBS prompts for the 

variables required for weights calculation. If the user desires, weights can be 

calculated differently in each new group. ADJOBS prompts:- 

Adjust weights for this observation subgroup  [y/n]?  

Then, if ñyò, 

Weights are calculated as w = a*(abs[observation_value])**b+c  

 Enter a:  

 Enter b:  

 Enter c:  

 Enter maximum allowable weig ht:  

 Enter minimum allowable weight:  

Respond to these prompts as appropriate; note that the formula for weights calculation 

is:- 

w = a[abs(observation_value)]
b
 + c 

By supplying b as ï1, weights can be made inversely proportional to observation 

values. This is often useful when estimating parameters for a runoff-generation model 

on the basis of observed values of discharge. All calculated weight values are 

constrained to lie within the maximum and minimum bounds provided by the user; 

neither of which can be less than zero. 

Note that weights can be adjusted in this manner whether or not a group is subdivided 

into smaller groups. The user simply informs ADJOBS that he/she does not wish to 

carry out group subdivision; he/she will then be prompted for the parameters of the 

weights calculation formula for the entire group. 

Finally, ADJOBS prompts for the name of a new PEST control file. It then writes this 

file using the new observation group names and/or weights provided by the user. You 

should check this file using PESTCHEK before supplying it to PEST. 

Uses of ADJOBS 

As has already been mentioned, ADJOBS is particularly useful in PEST preprocessing 

where PEST is to be used in the estimation of parameters for a model which generates 

one or a number of lengthy time series. Because there are often many measurements 



ADJOBS  3 

 

  

comprising an observation dataset in this context, preparation for a PEST run requires 

software assistance. Such assistance is available through PESTPREP, whose use is 

documented elsewhere in this manual. However PESTPREP does not allow automatic 

generation of observation groups on the basis of observation types. Nevertheless, it 

does allow observations of different types to be named differently. Group assignment 

can then be carried out using ADJOBS. 

ADJOBS can also be useful where different types of data are used simultaneously in 

model calibration. By assigned each observation type to a different observation group, 

it is possible to rapidly adjust the relative weighting assigned to each such group in the 

calibration process through the use of ADJOBS.  

See Also 

See also MOD2OBS, PESTPREP and SMP2SMP. 

 



ARR2BORE  4 

 

  

ARR2BORE 

Function of ARR2BORE 

ARR2BORE undertakes spatial interpolation from a single MODFLOW or MT3D-

compatible real array to a set of points whose coordinates are cited in a bore 

coordinates file. The array from which interpolation takes place can be housed in a 

formatted or unformatted file. As for the MOD2OBS and MOD2SMP utilities, 

interpolation from the array to the points is bilinear, with account taken of inactive 

cells. The latter are identified as cells for which absolute real-array values are above a 

user-specified threshold. 

Using ARR2BORE 

Like all programs of the Groundwater Data Utility suite, ARR2BORE checks for the 

presence of a file named settings.fig in the directory from which it is run. The contents 

of this file inform ARR2BORE of whether formatted real array files include a 

number-of-columns, number-of-rows header or not. 

After having read settings.fig (or complained of its absence), ARR2BORE asks for the 

name of the grid specification file pertaining to the current model:- 

 Enter name of grid specification file :  

in response to which the name of this file should be supplied. Once it has read this 

file, ARR2BORE prompts for the name of a bore coordinates file, and then a bore 

listing file:- 

 Enter name of bore coordinates file:  

 Enter name of bore listing file:  

(These can be the same file if desired). The format of these files is described in Part A 

of this manual. The former contains three columns of data, with the first column 

listing bore names (which should be 10 characters or less in length), and the second 

and third listing bore eastings and northings. If desired, the fourth (layer number) 

column can be omitted, for ARR2BORE does not read this column. 

The bore listing file comprises a selection mechanism for points to which spatial 

interpolation is required. This should contain a single column in which bore names are 

listed; if more than one column is present within this file, columns after the first are 

simply ignored. The bores listed within this file must be a subset of bores appearing in 

the bore coordinates file; only points listed in the bore listing file will appear in 

ARR2BOREôs output file, for it is only to these points that spatial interpolation takes 

place. 

ARR2BORE next asks for the name of the real array file which it must read. This can 

be a formatted or unformatted file, with extensions of ñrefò and ñreuò being the 

defaults for the former and latter file types respectively. ARR2BOREôs prompt is: 

 Enter name of real array file:  



ARR2BORE  5 

 

  

Inactive elements of the array contained in this file are identified as those whose 

absolute values are above a certain threshold, this threshold being supplied by the user 

in response to the prompt:- 

 Ent er inactive threshold for this array (<Enter> if 1E35):  

The method of spatial interpolation employed by ARR2BORE is the same as that used 

by MOD2OBS and MOD2SMP. This is a bilinear scheme, with modifications for 

proximity to inactive cells. If a point to which interpolation must take place is outside 

of the grid, or within an inactive cell, this condition is stated in the ARR2BORE 

output file. If the interpolation point is located at a place for which one of the four cell 

centres that enclose it is inactive (or it is not in fact enclosed by four cell centres at all 

due to proximity to the edge of the grid), the bilinear interpolation scheme is adjusted 

to compensate for this missing data. 

ARR2BOREôs final prompt is:- 

 Enter name for bore information output f ile:  

ARR2BORE writes its output data in tabular form, the output table being comprised 

of four data columns. The first of these columns contains bore identifiers. The second 

and third contain bore eastings and northings as read from the bore coordinates file. 

The fourth contains numbers obtained through spatial interpolation from the real array 

to the points listed in the bore listing file. 

Uses of ARR2BORE 

ARR2BORE is useful wherever spatial interpolation from a model array to a set of 

discrete points must take place. For example it can be used to undertake spatial 

interpolation from a freshwater/saltwater interface elevation array written by 

CONC2ELEV, to a set of observation wells. 

See Also 

See also MOD2OBS, MOD2SMP and CONC2ELEV. 

 

 

 



ARRAYOBS  6 

 

  

ARRAYOBS 

Function of ARRAYOBS 

The purpose of ARRAYOBS is to facilitate the introduction of a new dataset (of a 

certain type) into an existing inversion process. ARRAYOBS modifies an existing 

PEST control file and builds a new instruction file to allow inclusion of this data and 

the reading of model outputs corresponding to this data.  

Use of ARRAYOBS is predicated on the assumption that two ñthree-column real 

arrayò files exist. The format of these files is documented in Part A of the manual of 

the Groundwater Data Utilities; see also the description of program REAL2TAB later 

in this document. Such a file holds the same data as a MODFLOW/MT3D-compatible 

real array; however the data is arranged in columns so that it is more easily readable 

by other software (such as a GIS or spreadsheet package). One of these two files must 

contain ñthe observation datasetò ï that is, the data that will be recorded in the PEST 

control file; this is the data that model outputs must try to match. The other three-

column real array file must have been produced by the model. While ARRAYOBS 

does not actually use the data contained in this file, it does check that the same cells 

are represented in this file as are represented in the observation three-column real 

array file. It also generates an instruction set to read this file. Thus ARRAYOBS acts 

as a PEST pre-processor for an inversion process in which one of the model output 

files is a three-column real array table file. After each model run, PEST will read this 

file, attempting to match the numbers in this file to the corresponding numbers in the 

observation three-column real array table file. 

Note that a real array table file need not contain data pertaining to every cell in the 

model grid. Program TAB2REAL (which generates such a file from a real array file) 

allows use of an integer array for selection of array elements for representation in the 

table file. 

Using ARRAYOBS 

A settings file settings.fig  must be present in the directory from which 

ARRAYOBS is run. See Part A of the manual to the Groundwater Data Utilities for 

further details. 

ARRAYOBS commences execution with the prompt: 

 Enter name of grid specification file:  

to which you should respond by entering the appropriate filename. If a default 

filename for the grid specification file has been read from a filename file 

(files.fig ) resident in the current directory, that filename will appear with the 

above prompt. It can be accepted through pressing the <Enter> key or rejected by 

supplying the correct filename. The grid specification file contains the dimensions and 



ARRAYOBS  7 

 

  

geometry of the finite-difference model grid. Its specifications are explained in Part A 

of the manual of the Groundwater Data Utilities. 

Note that, as is the case for other members of the Groundwater Data Utilities, 

responding to any prompt with an ñeò (for ñescapeò) takes you back to the previous 

prompt. In this way mistakes can be quickly corrected. 

ARRAYOBS next prompts for the name of an existing PEST control file: 

 Enter name of PEST control file:  

and then for the names of two three-column real array table files:- 

 Enter name of observation real array table file:  

 Enter name of model real array table file:  

Each of these files will probably have been written by program REAL2TAB 

(ARRAYOBS assumes use of exact REAL2TAB format when generating instructions 

to read the second of these files). However it is assumed that the first file contains 

ñobservation dataò and that the second file is an example of a model output file to be 

generated repeatedly during the forthcoming parameter estimation process; part of the 

aim of this process will be to match a model output real array to an observation real 

array. As is the protocol for a real array table file, not all real array elements need to be 

represented in this file. However it is essential that the two files named in response to 

the above prompts contain data pertaining to exactly the same cells of the finite 

difference grid and that the array elements are listed in the same order. (This is easily 

ensured by using the same ñwindow integer arrayò when generating these files using 

REAL2TAB.) Array data extracted from the observation real array table file will be 

written to the ñobservation dataò section of the PEST control file. An instruction file 

will be generated to read the model real array table file. However prior to undertaking 

any of these activities, ARRAYOBS will ensure that the two files named in response 

to the above prompts are matched element for element. 

When adding data to the PEST control file, and when writing instructions to read the 

model real array table file, ARRAYOBS provides names for the observations 

pertaining to real array elements. The naming protocol is ñpr_row_colò, where ñprò is 

a two character prefix, row is the cell row number, and col is the cell column number 

(these are both supplied in all  three-column real array table files). The one or two 

character prefix is supplied by the user in response to the prompt:- 

 Enter prefix for new observation names (two characters or less):  

ARRAYOBSôs next two prompts are:- 

 Enter  weight to assign to new observations:  

 Enter group name for new observations:  

As is explained in the PEST manual, each observation must be given a weight and 

must be assigned to a group. For observations assigned to the observation group regul, 

user-supplied weights are multiplied by a PEST-calculated ñweight factorò (which is 

re-calculated during every optimisation iteration) to ensure that the pertinent 

observations feature in the inversion process as much as is required to enforce the 

regularisation constraints which they embody without, at the same time, detracting 



ARRAYOBS  8 

 

  

from PESTôs ability to achieve a desired level of fit between model outcomes and 

field data. 

If the user wishes that a more complex weighting strategy than that of a single uniform 

weight be applied to observations introduced to the inversion process by 

ARRAYOBS, he/she can use program ADJOBS from the Groundwater Data Utilities 

to adjust these weights. Note that, for observations belonging to the observation group 

regul, relatively of weights is preserved as weights are adjusted through the 

regularised inversion process. 

ARRAYOBS next prompts for the name of the new PEST control file which it must 

write:- 

 Enter name for new PEST control file:  

Enter an appropriate name (an extension of ñ.pstò is mandatory). 

ARRAYOBS next issues a special sequence of prompts if the existing PEST control 

file is not set up to run in regularisation mode, and if the name of the new observation 

group (as supplied by the user in response to the pertinent one of the above prompts) 

is ñregulò. Inferring that the user will want to be running PEST in regularisation mode, 

ARRAYOBS offers to add a ñregularisationò section to the end of the new PEST 

control file which it is about to write. It asks:- 

 Use regularisation mode for new PEST control file?  [y/n]:  

If the response to this prompt is in the affirmative, ARRAYOBS prompts for the 

names of two regularisation control variables:- 

 Enter value for PHIMLIM:  

 Enter value for FRACPHIM:  

It supplies default values for the other variables appearing in the ñregularisationò 

section of the PEST control file which it generates; these can be easily altered by the 

user by direct editing of this file if desired. (Note that a value of zero for FRACPHIM 

is normally suitable; however be prepared to raise this value if PEST appears to be 

buffeted by the winds of numerical instability.) 

Finally ARRAYOBS prompts for the name of the instruction file which will contain 

the instructions which PEST will use to read the model-generated real array table file:- 

 Enter name for instruction file:  

ARRAYOBS then writes the new instruction and PEST control files. In writing the 

new PEST control file, ARRAYOBS modifies the existing PEST control file in the 

following ways:- 

1. It adds observations (based on the observation three-column real array file) to 

the ñobservation dataò section of the PEST control file. 

2. It increases the value of NOBS (number of observations) in the ñcontrol dataò 

section of the PEST control file accordingly. 



ARRAYOBS  9 

 

  

3. If the requested name for the observation group to which the new observations 

are assigned is not featured in the original PEST control file, ARRAYOBS 

adds the name of this new group to the ñobservation groupsò section of the 

PEST control file. It increments the control variable NOBSGP accordingly. 

4. It records the names of the new instruction file and the corresponding model 

output file in the ñmodel input/outputò section of the new PEST control file. It 

also increments the NINSFLE variable in the ñcontrol dataò section of the 

PEST control file. 

5. If requested, it alters the PESTMODE control variable to ñregularisationò and 

adds a ñregularisationò section to the end of the new PEST control file. 

Uses of ARRAYOBS 

ARRAYOBS is particularly useful when preparing for a PEST run in regularisation 

mode where the regularisation condition is one of minimizing the discrepancy 

between a model output array and a ñpreferred system conditionò array. The latter may 

be uniform, piecewise uniform, embody a data trend, contain a stochastic field, or 

represent the ñpreferred system conditionò in any other way that is useful in the 

current modelling context. In all cases, when run in regularisation mode, PEST will be 

asked to adjust model parameters until the fit between model outputs and field 

measurements is reduced to a user-specified level (PEST variable PHIMLIM), but to 

do this in such a way that the selected model output array is as close as possible to the 

preferred system condition array. This model output array will often be the model 

hydraulic conductivity array (or the log of this array) calculated through ñwarpingò of 

the ñpreferred system conditionò array through use of a multiplier array. The latter 

may have been generated through interpolation between pilot points whose values are 

estimated by PEST through the inversion process. Alternatively, the model output 

array may be the multiplier array itself, this being matched to an observation array 

comprised entirely of ones during the inversion process (or zeros if the log of the 

multiplier array is used as the model output file). Whatever strategy is employed, the 

regularisation process used by PEST ensures numerical stability at the same time as it 

ensures minimum departure from the ñpreferred system stateò. If a series of such states 

is generated on the basis of geostatistical knowledge of an area, a series of calibrated 

models can be produced instead of just one. By using all of these models when 

making a prediction, the uncertainty pertaining to this prediction can be analysed. 

See Also 

See also ADJOBS, PESTPREP and REAL2TAB. 

 



ARRDET  10 

 

  

ARRDET 

Function of ARRDET 

ñARRDETò stands for ñARRay DETailsò. It reads an unformatted MODFLOW heads 

or drawdowns output file, or a MT3D unformatted concentrations output file, and lists 

to a user-specified ASCII file the contents of the headers to arrays found in this file. 

Using ARRDET 

ARRDET is run by typing its name at the command-line prompt. It obtains 

information from the user through the userôs response to a series of its own prompts. 

As for other members of the Groundwater Data Utilities, if the user responds to any 

such prompt with the single letter ñeò, operation of ARRDET will return to its 

previous prompt. 

Like most programs of the Groundwater Data Utility suite, ARRDET begins 

execution by prompting for the name of the grid specification file pertaining to the 

current model. The prompt is:- 

 Enter name of grid specification file :  

If a filename file (named files.fig) is present in the current working directory, and if 

this file lists the name of the grid specification file for the current model, this name 

will be included in the above prompt. To accept this filename simply press the 

<Enter> key; otherwise, provide ARRDET with the name of the correct grid 

specification file. 

Next ARRDET asks for the name of the MODFLOW/MT3D unformatted output file 

which it must read:- 

 Enter name of unformatted model - generated file:  

and whether this is a MODFLOW or MT3D output file (the array headers for these 

two file types are different). 

 Is this a MODFLOW or MT3D file?  [f/t]:  

Respond with ñfò or ñtò as appropriate. 

Next ARRDET prompts for the name of the output text file which it must write:- 

 Enter name for output file:  

It then reads the unformatted MODFLOW/MT3D output file, listing the contents of 

array headers found therein to its own output file. The user can thus become aware of 

the contents of such files (which are otherwise hidden because of their binary nature). 

Uses of ARRDET 

ARRDET is useful as a precursor to the use of GETMULARR. An altered ARRDET 

output file can serve as a GETMULARR input file. 



ARRDET  11 

 

  

See Also 

See also GETMULARR, GETMULARR1, MOD2OBS, MOD2SMP, MANY2ONE 

 

 

 



ASENPROC  12 

 

  

ASENPROC 

Function of ASENPROC 

ASENPROC reads a distributed parameter sensitivity file recorded by the adjoint state 

process of MODFLOW 2005. It writes a PEST ñexternal derivatives fileò on the basis 

of information obtained from this file, and from user-supplied definitions of PEST 

parameters in terms of model cells comprising MODFLOW distributed parameters. 

Thus PEST can dispense with the need to calculate derivatives for those of its 

parameters defined in this manner using finite parameter differences, allowing the 

more accurate and more efficient (when observations and/or observation locations 

outnumber parameters) adjoint state process of MODFLOW to undertake the 

calculation of these derivatives instead. 

It is assumed that one or a number of ñdistributed parametersò are defined through the 

MODFLOW adjoint state process input file. In most cases a distributed parameter will 

comprise many cells, possibly all of the active cells within a single model layer, or 

even multiple model layers. Parameters employed by PEST can be defined from these 

in a variety of ways. At one extreme, PEST parameters may be comprised of 

individual model cells. Alternatively, parameters may be defined on the basis of 

collections of model cells comprising zones. There may be many such zones, each 

comprised of only a few model cells; alternatively, a handful of more pervasive zones 

may occupy a significant portion of a model layer. Another alternative is to use more 

complex parameterisation devices such as pilot points, in which each cell within the 

domain of a distributed parameter may contribute to the definition of multiple PEST 

parameters, this number being equal to the number of pilot points from which 

interpolation takes place to that cell.  

In summary, while the adjoint state process can compute sensitivities to pertinent 

hydraulic properties at all model cells for each observation, PEST requires that 

sensitivities be provided for the parameters which it uses itself, whether these 

correspond exactly to individual model cells, or to complex amalgams of many cells. 

The purpose of ASENPROC it to calculate these PEST derivatives. 

Using ASENPROC 

MODFLOW Distributed Parameter Sensitivity File 

The MODFLOW adjoint state process provides a number of formatting options 

through which distributed sensitivities can be recorded. These are selected through the 

IAFORM and PVALUEOUT variables, values for which must be provided in its 

adjoint state process input file. Use of ASENPROC assumes that IAFORM has been 

set to 3 and PVALUEOUT has been set to 1. A formatted or unformatted sensitivity 

file can be recorded, depending on the setting of the IADJXDU variable. The 

disposition of MODFLOW outputs recorded in the former case is shown below. The 

disposition of outputs for the unformatted case is the same; but, of course, the file is 

not an ASCII file. 



ASENPROC  13 

 

  

IAFORM  PVALUEOUT 

DISCUT 

NPARDIS 

PARDISNAME_1 

PARDISNAME_2 

a total of NPARDIS lines  

. .  

NOBS 

OBSNAME_1 

OBSNAME_2 

.  .  

a total of NOBS lines  

NRECORD  PARDIS_N   OBSNAME_M  OBSVAL 

ICOL   IROW   ILAY SENSITIVITY    VALUE 

ICOL   IROW   ILAY SENSITIVITY    VALUE 

. .  

a total of N RECORD lines  

NRECORD  PARDIS_N   OBSNAME_M  OBSVAL 

ICOL   IROW   ILAY SENSITIVITY    VALUE 

ICOL   IR OW   ILAY SENSITIVITY    VALUE 

a total of N RECORD lines  

etc  

Format of a distributed parameter sensitivity file when IAFORM is set to 3 and 

PVALUEOUT is set to 1. 

The first line of the distributed parameter sensitivity file records IAFORM and 

PVALUEOUT. Then follows the value of the sensitivity cutoff variable DISCUT; cell 

sensitivities whose relative values are less than this are not represented in the ensuing 

sensitivity tables.  

The following line quotes the number of distributed parameters NPARDIS for which 

sensitivities are recorded in the present file; these distributed parameters are then 

named on NPARDIS subsequent lines. 

The number of observations NOBS for which sensitivities are provided is listed on the 

next line of the distributed parameter sensitivity file; the names of these observations 

occupy the following NOBS lines. 

Following observation names are NPARDIS times NOBS groups of entries, each 

group pertaining to a particular distributed parameter and a particular observation. 

Each of these entries is initiated by a header, the first item of which lists the number of 

records to follow; subsequent entries in this header are the names of the distributed 

parameter and observation to which the following NRECORD records pertain and the 

model-generated equivalent to the observation value. Each of the following 

NRECORD records contains five entries. The first three are the column, row and layer 

number of a cell within the domain of the pertinent distributed parameter; then 

follows the sensitivity of the observation to the pertinent hydraulic property within 

that cell. Then follows the current value of the hydraulic property as assigned to that 

cell. 

Because of the comparatively large amount of information that may need to be 

accommodated in a distributed parameter sensitivity file, it must be read efficiently. 

To this end, ASENPROC assumes the following. 



ASENPROC  14 

 

  

1. Cycling of distributed parameter-observation record groups is such that the 

distributed parameter is the inner variable while the observation is the outer 

variable. Thus a complete cycle of distributed parameters occurs before the 

observation alters.  

2. The order in which distributed parameters and observations are cycled is the 

same as that in which they are listed earlier in the file. 

3. Within each group of sensitivity records pertinent to a single distributed 

parameterïobservation pair, cell cycling is assumed to occur with column 

number as the innermost variable, row number as the next, and with layer 

number as the outermost loop variable. 

The Distributed-to-PEST Parameter File 

For each distributed parameter featured in a MODFLOW-generated distributed 

parameter sensitivity file, the user must supply a file which provides ASENPROC 

with the means to compute sensitivities for PEST parameters from those of individual 

cells comprising each distributed parameter. This is done through a ñdistributed-to-

PEST-parameter fileò. At present only an ASCII version of this file is readable by 

ASENPROC; its format is specified below. 

NDIM ITRANS 

MLAY 

LAYER_1 

.  .  

total of MLAY  l ines  

MPAR 

PARNAME_1 

PARNAME_2 

.  .  

total of MPAR  lines  

MAXENT 

ICOL IROW ILAY NUMENT PARNUM_1 CONTRIB_1 PARNUM_2 CONTRIB_2 . . ( NUMENT pairs )  

etc  

Format of a distributed-to-PEST-parameter file. 

The purpose of a distributed-to-PEST-parameter file is to hold a ñtranslation tableò 

from which PEST parameter sensitivities can be computed from cell-based 

sensitivities calculated by the MODFLOW adjoint state process. The translation table 

occupies the (often large) last portion of this file (i.e all lines following ñMAXENTò 

in the above figure). Within the ASENPROC program this table is held within two 

large arrays. One of these is an integer array holding PEST parameter numbers (with 

parameter number ordering taken from the PEST control file pertinent to the current 

inverse problem). The second holds the sensitivity contribution to that PEST 

parameter from a particular cell within the domain of a distributed parameter. Each 

PEST parameter can be cited many times in the first of these arrays. Hence the size of 

the translation table can be large. ASENPROC needs to know this size before it fills 

this array so that it can allocate memory for it. NDIM (the first item in the distributed-

to-PEST-parameter file) provides this dimension. It can be evaluated as the number of 

cells within the domain of a distributed parameter, times the number of PEST 

parameters to which each such cell contributes. This latter number may vary from cell 

to cell and hence NDIM may be difficult to compute. Fortunately, the value supplied 



ASENPROC  15 

 

  

for NDIM does not need to be exact ï it only has to be larger than the actual size of 

the translation table. 

Because of their large size, processing of the information contained within both the 

distributed parameter sensitivity and distributed-to-PEST-parameter files must be 

efficient. Most of this processing will be comprised of linking sensitivities read from 

the distributed parameter sensitivity file to pertinent PEST parameters. Hence the 

ability to make rapid linkages between column, row and layer numbers cited in the 

distributed parameter sensitivity file to PEST parameters defined in the distributed-to-

PEST-parameter file is essential. To expedite this process (and minimize table 

searching), ASENPROC requires that cells in distributed-to-PEST-parameter 

translation tables be supplied in order of increasing ñmodel cell numberò where 

ñmodel cell numberò is calculated by counting along columns, down rows, and finally 

down layers. This is a cyclic process with columns comprising the inner loop, rows 

comprising the middle loop and layers comprising the outermost loop (and therefore 

cycling most slowly). 

Further processing economies are realised though the fact that ASENPROC can 

undertake cell referencing using internal integer arrays with dimensions the same as 

those of a model layer. This is appropriate if a distributed parameter representing 

system properties such as hydraulic conductivity is defined to encompass most of one 

or many model layers; it is not appropriate for distributed parameters representing 

properties such as river conductance where the number of cells comprising each such 

parameter may be much smaller than those comprising an entire model layer. Thus 

ASENPROC also provides tabular cell referencing, with look-up speed expedited by 

the table entry ordering convention discussed above. The user selects the appropriate 

option through the MLAY variable supplied on the second line of the distributed-to-

PEST-parameter file.  

If MLAY is provided with a positive value, ASENPROC takes it to represent the 

number of layers that comprise the domain of a distributed parameter. It is not 

essential that the entirety of any particular layer comprise this domain; however if any 

part of a particular model layer lies within this domain, then that layer must be 

counted in computation of MLAY. The numbers of the MLAY pertinent model layers 

are listed after that (following the usual MODFLOW convention of starting at the 

surface and increasing layer indexing downwards). Alternatively, if a negative value 

for MLAY is provided, ASENPROC reads this as MCELL, this being the number of 

cells actually cited in the translation table listed later in the file (i.e. the number of 

records following the MAXENT variable, with each record pertaining to one 

distributed parameter cell). Use of a positive MLAY value requires that ASENPROC 

allocate 2 × MLAY integer arrays for storage of data through which entries of the 

translation table may be quickly accessed. Use of a negative MLAY value (whereby 

MCELL is actually provided), requires less storage, but possibly slower access to the 

translation table. Note that if MLAY is supplied as negative, the following layer 

number entries are omitted from the distributed-to-PEST-parameter file. 

MPAR in the above specifications is the number of PEST parameters that depend on 

the current distributed parameter. (The name of this distributed parameter is not 



ASENPROC  16 

 

  

actually provided in the distributed-to-PEST-parameter file. Instead this file is linked 

to a MODFLOW distributed parameter through terminal input provided to 

ASENPROC as it runs. This allows the user to alter the name of a distributed 

parameter in a MODFLOW input dataset without the need to simultaneously alter 

entries in the distributed-to-PEST-parameter file.) The names of these MPAR PEST 

parameters must be provided one-to-a-line after that. All, or only some, of the PEST 

parameters featured in the cited PEST control file may be provided in this list. 

However if a parameter is cited in this list but is not included in the PEST control file 

pertinent to the current inverse problem, ASENPROC will cease execution with an 

appropriate error message. 

The final (and by far the most lengthy) part of a distributed-to-PEST-parameter file is 

comprised of a series of records, one for each cell within the domain of the distributed 

parameter, each such entry citing PEST parameters which are ñinformedò by that cell, 

together with the extent to which they are thus ñinformedò Thus, for example, if a 

particular cell is within interpolation range of five pilot points, then five factors must 

follow the cell identifier (i.e. its column, row and layer number), together with the 

pilot point parameters to which these factors pertain. For pilot points these will be 

equivalent to the interpolation factors from each such point to the cell in question. 

Alternatively, where there is a one-to-one relationship between each distributed 

parameter cell and a PEST parameter, only one pair of entries will follow the cell 

identifier, one of this pair identifying a particular PEST parameter, the other being 

ñ1.0ò. Where a number of model cells comprise a single zonal PEST parameter, the 

same will apply; in this case, entries for all distributed parameter cells pertaining to 

the same PEST zone will be the same. 

MAXENT is the maximum number of entries that follow any one distributed 

parameter cell identifier in any record of the following translation table. Knowledge of 

this value allows ASENPROC to dimension its ñreceptor arrayò large enough to 

rapidly and efficiently read all entries pertaining to all  distributed parameter cells. If 

MAXENT is set too small, ASENPROCôs behaviour will be unpredictable; hence it is 

essential that care be taken in providing a suitable value for this number. There is very 

little cost incurred in supplying an overly large value; so the user is advised to err on 

the side of caution. 

Finally the translation table must be supplied. Each line begins with the column, row 

and layer number of a model cell. (Each cell must be cited only once in this table.) 

Then NUMENT, the number of pairs of entries to follow, is provided. Following that, 

NUMENT pairs of (parameter number, contribution factor) values are supplied. The 

first identifies a PEST parameter by order of listing in the parameter table provided 

earlier in the distributed-to-PEST-parameter file. (Note that parameters do not need to 

be listed in the same order as in the PEST control file pertinent to the current inverse 

problem; hence a distributed-to-PEST parameter file is re-useable for other inversion 

tasks.) The second is the factor through which the sensitivity of the cell contributes to 

the overall sensitivity of the PEST parameter. 



ASENPROC  17 

 

  

As many records should be provided in the translation table as there are active cells 

within the domain of the distributed parameter. Lines can wrap if necessary. However 

a listing for each new cell must begin on a new line. 

Interpolation and Transformation 

The second variable on the first line of the distributed-to-PEST-parameter file is 

named ITRANS. This should be set to 1 if the logs of sensitivities of PEST parameters 

are to be computed from the logs of sensitivities of individual MODFLOW cells 

comprising a distributed parameter. This can occur, for example, where PEST 

parameters are pilot points, and where the distributed parameter represents hydraulic 

conductivity. In this case it is recommended practice that spatial interpolation from 

pilot points to the MODFLOW grid takes place on the basis of log conductivity values 

rather than native conductivity values; hence the structure file provided to PPK2FAC 

which computes interpolation factors should indicate that variograms governing the 

kriging process actually pertain to the log of the interpolation variable rather than to 

the variable itself. (The PPMDEF utility will automatically detect this occurrence and 

employ an ITRANS value of 1 when it writes a distributed-to-PEST-parameter file 

suitable for use with pilot point parameters.) On the other hand if PEST parameter 

sensitivities are computed through combining untransformed MODFLOW cell 

sensitivities, an ITRANS value of 0 must be employed. 

With ITRANS set to 1, ASENPROC encounters a small problem, in that it needs to 

know the values of both current distributed parameters on a cell-by-cell basis, and of 

current PEST parameters. Knowledge of both of these is necessary for it to convert 

cell sensitivities to the logs of cell sensitivities on the one hand, and for it to convert 

the logs of PEST parameter sensitivities (computed through weighted summation of 

log cell sensitivities) to native parameter sensitivities as required by PEST from its 

external derivatives file. ASENPROC obtains cell hydraulic property values from the 

MODFLOW-generated distributed parameter sensitivity file. (This is why the 

PVALUEOUT variable in the MODFLOW adjoint process input file must be set to 1.) 

It obtains current PEST parameter values from the PEST-to-model message file 

(which is always named pest.mmf); see the PEST manual for details of this file. It is 

very important to note that the PEST control variable MESSFILE must be set to 1 to 

ensure that this file is written by PEST. If ITRANS is set to 1 in any distributed-to-

PEST-parameter input file read by ASENPROC, and ASENPROC does not find this 

file, it will cease execution with an appropriate error message. Hence if PEST 

complains that it cannot read the external derivatives file (which is supposed to be 

written by ASENPROC), the PEST control file should be checked for a correct 

MESSFILE setting.  

When testing that ASENPROC runs correctly prior to including the command to run it 

after MODFLOW in the batch or script file cited in the ñderivatives command lineò 

section of the PEST control file, ASENPROC will require the presence of a PEST-to-

model message file if ITRANS is set to 1 in any distributed-to-PEST-parameter file 

which it reads. Such a file may already be in existence from a previous PEST run. 

Alternatively, it can be created very quickly using a text editor on the basis of its 

format specifications as recorded in the PEST manual. It is important that the first line 



ASENPROC  18 

 

  

of this file says ñexternal_derivativesò (which is easily ensured using a text editor). 

ASENPROC will cease execution with an error message if this is not the case. This 

ensures that, when run under the control of PEST, it is synchronised with PEST, for 

PEST writes a different header line to this file prior to model runs undertaken for 

different purposes. 

Running ASENPROC 

ASENPROCôs screen prompts are now reviewed. Response to these prompts which is 

through the keyboard, or through a file containing pre-recorded responses supplied to 

ASENPROC through input file re-direction, achieved through use of the ñ<ò symbol 

on the ASENPROC command line; it is in this latter manner that ASENPROC must 

be run when used as a MODFLOW post-processor through the PEST inversion 

process. 

As for other members of the Groundwater Data Utilities, a response to any prompt is 

simply ñeò (for ñescapeò) followed by <Enter>, ASENPROC will backtrack to the 

previous prompt. 

ASENPROC commences execution with the prompt:- 

 Enter name of grid  specification file:  

If a filename file (files.fig) is present within the current working directory, and if this 

file includes the name of the grid specification file for the current problem, this name 

will be included in the above prompt; acceptance of this default requires only that the 

<Enter> key be pressed. 

Next ASENPROC asks: 

 How many layers in the model?  

followed by:- 

 Enter name of PEST control file:  

ASENPROC obtains from the PEST control file the names of all parameters and 

observations that feature in the current inverse problem; it needs this information so 

that it can properly order sensitivities which it writes to the PEST external derivatives 

file. 

ASENPROC next prompts for the name of the distributed parameter sensitivity file:- 

 Enter name o f MODFLOW distributed parameter sensitivity file:  

 Is this a formatted or unformatted file?  [f/u]:  

Respond to the second of the above prompts with ñfò or ñuò followed by <Enter> as 

appropriate. 

For each distributed parameter named in the distributed parameter sensitivity file, 

ASENPROC next prompts:- 

 Enter name of distributed - to - PEST- parameter file for " parameter name ":  



ASENPROC  19 

 

  

(where ñparameter_nameò is the name of a distributed parameter) in response to 

which the name of a suitable distributed-to-PEST-parameter file should be provided. 

Finally, when the names of all such files have been supplied, ASENPROC prompts:- 

 Enter name for PEST external derivatives file:  

ASENPROC then evaluates the derivative with respect to each PEST parameter of 

each observation cited in the MODFLOW distributed parameter sensitivity file, 

recording the results of its deliberations in PEST external derivatives file format. Once 

it has written this file it notifies the user of this, and then ceases execution. 

The following should be noted. 

1. If an observation is cited within the PEST control file but not within the 

MODFLOW distributed parameter sensitivity file, ASENPROC records all 

sensitivities for this observation as -1.11E33. As is explained in the PEST 

manual, this value indicates to PEST that sensitivities are not available for 

these observation/parameter combinations. In a properly comprised PEST 

inversion problem, these sensitivities will be computed by other means, 

presumably through finite parameter differences. 

2. If a parameter is cited within the PEST control file, but not within any 

distributed-to-PEST-parameter file, then that parameter is independent of any 

distributed parameter. Sensitivities of all observations to that parameter are 

recorded by ASENPROC as -1.11E33. 

Uses of ASENPROC 

ASENPROC should be run as a MODFLOW postprocessor, the command to run this 

program being provided in the batch file run by PEST as ñthe modelò. The JACFILE 

and MESSFILE variables in the PEST control file should be set to 1, and a 

ñderivatives command lineò section provided in this file. This command should be 

such as to run MODFLOW with the adjoint sensitivity calculation process active. 

However, this process should be de-activated when running MODFLOW solely for 

the purpose of obtaining model outputs corresponding to observations on which to 

base calculation of the objective function; this should be reflected in the command 

supplied through the ñmodel command lineò section of the PEST control file. 

See Also 

See also MKMHOBS, PPMDEF, ZONMDEF. 

Acknowledgement 

The writing of this utility was supported by a contract with Boise State University 

under USEPA Grant X-96004601-0. I wish to express my gratitude for this support. 



BUD2HYD  20 

 

  

BUD2HYD 

Function of BUD2HYD 

Program BUD2HYD reads an unformatted cell-by-cell flow term file written in 

COMPACT form by MODFLOW96 and later versions of MODFLOW. It extracts 

cumulative flow rates within each of a number of user-defined zones within the model 

domain for all times represented in the cell-by-cell flow term file. It then records these 

flow rates on its output file in a format that is readily acceptable to most commercial 

plotting packages. Thus flow rates within different parts of the model domain can be 

plotted against time. 

Using BUD2HYD 

Like many of the Groundwater Data Utilities, immediately upon commencement of 

execution BUD2HYD looks for a file named settings.fig  in the subdirectory 

from which it was invoked. If this file is not found, BUD2HYD terminates execution 

with an appropriate error message. As is explained in Section 2.19 of Part A of this 

manual, the contents of file settings.fig  inform those utilities that read it of the 

format to use in representing dates. 

BUD2HYDôs first prompt is: 

 Enter name of grid specification file:  

If a filename file (files.fig ) residing within the working subdirectory contains the 

name of a grid specification file, that name will appear as part of the above prompt. 

The user can accept it simply by pressing the <Enter> key; alternatively, another 

filename can be supplied instead. BUD2HYD obtains the grid dimensions for the 

current model by reading the first line of the grid specification file. It obtains the 

number of layers in the current model from the userôs response to the prompt:- 

 How many layers in the model?  

BUD2HYD next prompts for the name of the MODFLOW unformatted cell-by-cell 

flow term file which it must read:- 

 Enter name of MODFLOW unformatted BUDGET output file:  

It then asks:- 

 Is this a MODFLOW88 or MODFLOW96 budget file  [8/9]?  

If the user responds by typing ñ8ò, indicating that the file was produced by 

MODFLOW88, BUD2HYD terminates execution with an appropriate error message, 

for BUD2HYD can only process cell-by-cell flow term files produced by 

MODFLOW96 or later versions of MODFLOW. Furthermore, BUD2HYD can only 

read such files if they are stored in COMPACT form. This is because files stored in 



BUD2HYD  21 

 

  

this form contain timing information (lacking in other forms of flow term storage) 

which is essential for the recording of flow data in a manner that allows plotting 

against elapsed simulation time. Hence if BUD2HYD discovers that the cell-by-cell 

flow term file whose name was provided above is not, in fact, stored in COMPACT 

form, it terminates execution with an appropriate error message. If your MODFLOW 

pre-processor does not provide an option for file storage in this manner this is not a 

problem, for a user can easily create a MODFLOW OUTPUT CONTROL file 

him/herself which directs MODFLOW to store files in COMPACT form. See the 

MODFLOW96 and MODFLOW2000 manuals for details. 

BUD2HYDôs next prompt is:- 

 Enter text to identify flow type: -  

Whenever it writes an array to its cell-by-cell flow term file, MODFLOW first records 

an array header. The header contains timing information as well as a 16-character 

identifier of the flow type represented in the following array. Some of these identifiers 

are set out in the table below. 

Package Identifier 

bcf/lpf/huf STORAGE 

bcf/lpf/huf CONSTANT HEAD 

bcf/lpf/huf FLOW RIGHT FACE 

bcf/lpf/huf FLOW FRONT FACE 

bcf/lpf/huf FLOW LOWER FACE 

drain DRAINS 

recharge RECHARGE 

river RIVER LEACKAGE 

well WELLS 

Some text identifiers contained in cell-by-cell flow term array headers. 

The user should supply at least part of an appropriate text identifier in response to the 

above prompt. If the user-supplied text occurs within the array identifier supplied with 

a particular array header, that array will be processed by BUD2HYD. Otherwise the 

array is ignored. Note that in normal BUD2HYD usage, only enough text needs to be 

provided in response to the above prompt to uniquely identify one particular flow 

type. If the user wishes to plot more than one flow term type against time, he/she 

should run BUD2HYD more than once, supplying a different text string in response to 

the above prompt on each occasion. (Note that, as is explained below, the user may 



BUD2HYD  22 

 

  

ascertain the text identifiers pertaining to various MODFLOW packages by reading 

BUD2HYDôs record file after BUD2HYD has finished execution.) 

BUD2HYD next prompts:- 

 Enter simulation starting date [dd/mm/yyyy]:  

 Enter simu lation starting time [hh:mm:ss]:  

 Enter time units employed by model [y/d/h/m/s]:  

(Note that date representation will be in the format ñmm/dd/yyyyò instead of 

ñdd/mm/yyyyò if this is appropriately denoted in the settings file settings.fig .) 

BUD2HYD requires the above information so that it can record the date and time 

pertaining to every flow rate on its output file, this information being useable in 

certain plotting circumstances. 

Next the user is required to supply model zonation information. Zonation is described 

by a series of integer arrays, one for each layer. A zone is thus defined as the 

collection of model cells to which the same integer value is assigned. Such integer 

arrays can be created in most MODFLOW graphical user interfaces; see section 2.10 

of Part A of this manual for further details. Note that cells which are assigned an 

integer value of zero are ignored. Thus the user can ascertain the flows within a 

small part of the model domain by supplying a set of integer arrays which are 

everywhere zero except within that part of the domain which is of interest. Prompts 

are:- 

 Enter name of integer array file for layer 1:  

 Enter name of integer array file for layer 2:  

 etc.  

Note that the same integer array file can be supplied for more than one layer if desired. 

Next BUD2HYD prompts for the name of its principal output file:- 

 Enter name for time - series output file:  

Then:- 

 Enter flow rate factor:  

A flow rate factor different from unity may be required to convert MODFLOW-

generated flow rates to more appropriate units. Flow rates recorded in the 

MODFLOW cell-by-cell output file pertain to the length and time units used by 

MODFLOW; a user may prefer to use different flow rates when presenting model 

outputs in graphical form. Flow rates calculated for each MODFLOW zone are 

multiplied by the flow rate factor supplied above before being written to the 

BUD2HYD output file. 

Part of a typical BUD2HYD output file is shown below. 

Flow_type      Elapsed_Time    Date        Time         Flow_rate_1  Flow_rate_2  

 DRAINS         5.250000E+00    06/01/1991  06:00:00      - 2499.2446   - 3234.2343  

 DRAINS         1.575000E+01   16/01/1991  18:00:00      - 3709.3015   - 2893.6432  

 DRAINS         2.625000E+01   27/01/1991  06:00:00      - 4729.2451   - 2742.4234  

 DRAINS         3.675000E+01   06/02/1991   18:00:00      - 5616.1382   - 2342.4234  

 DRAINS         4.725000E+01   17/02/1991  06:00:00      - 6421.5688   - 1932.5234  

 DRAINS         5.775000E+01   27/02/1991  18:00:00      - 7165.6807   - 1743.4323  

Part of a BUD2HYD output file. 

 



BUD2HYD  23 

 

  

The BUD2HYD output file is immediately amenable to plotting by most commercial 

plotting packages. The first column contains the text annotation pertaining to the flow 

type as recorded in MODFLOW array headers; note that if the user supplied 

insufficient text to discriminate between different header types, both flow types will 

be recorded; if so, this will be immediately apparent from an inspection of the 

BUD2HYD output file. Such a file will be of limited use for plotting purposes. 

The second column of the BUD2HYD output file contains elapsed time in model 

units. This is normally plotted against the data residing in columns five and above. 

Columns three and four list the date and time corresponding to each row. Finally, 

columns five and above contain flow rates summed within each user-defined zone. 

Column headers indicate the zones to which the various columns pertain; header 

format is ñFlow_rate_nò where n is the integer array value defining a particular zone. 

Note that where applicable (eg. for the drain, recharge, river, etc packages), negative 

values represent model outflows whereas positive values represent model inflows. 

Before writing its output file, BUD2HYD prompts:- 

 Assign flows to beginning, middle or finish of time step?   [b/m/f]:  

If the user types ñf ò, the time associated with each flow term (ie. each row in the 

above table) will be the same as the time of model output (ie. the end of a particular 

model time step). However this may be inappropriate in many instances, as the user 

may consider that flow rates should be plotted at a time corresponding to the middle 

of each time step for which they were evaluated. Thus if the user types ñmò in 

response to the above prompt, elapsed times (as well as dates) appearing in the 

BUD2HYD output file will correspond to the middle of each model time step for 

which the flow terms were accumulated. Similarly, by typing ñbò, flow terms can be 

assigned to the beginning of pertinent MODFLOW time steps. 

BUD2HYDôs final prompt is:- 

 Enter name for run record file:  

Upon completion of execution BUD2HYD writes a record of every array encountered 

in the MODFLOW cell-by-cell flow term file which it has just read. This is a very 

useful function, for even if you do not wish to record data in time series format for 

later plotting, BUD2HYD can be used to list the contents of an unformatted 

MODFLOW budget file. As was mentioned above, text identifiers are also recorded in 

this file (under the heading ñflow typeò); this information can be of use in designating 

flow types in later BUD2HYD runs. Data that has been stored in plot-ready form by 

BUD2HYD is indicated by a ñyesò in the final column of its run record file. Part of 

such a file is shown below. 



BUD2HYD  24 

 

  

Part of a BUD2HYD run record file. 

Uses of BUD2HYD 

Uses of BUD2HYD are many. However a particularly important role is the tabulation 

of outflows to river and drain cells through the course of a model run. In the former 

case model-generated river outflows can then be compared with observed river 

baseflows for calibration purposes. 

Where drain cells are used to simulate mining operations, the use of BUD2HYD in 

conjunction with MODFLOW presents a useful means of examining mine inflow as 

the disposition of mining operations (and hence MODFLOW drain cells) changes over 

time. The user simply builds an integer array that is zero everywhere except at cells 

that fall within the mined area; (such cells can all be assigned an integer array value of 

1). Drain cell disposition can vary from stress period to stress period as mining 

progresses. By running BUD2HYD after MODFLOW, a record of mine inflow vs 

time in plot-ready format can be obtained. 

As was mentioned above, BUD2HYD can be used to simply obtain a table of contents 

of a MODFLOW budget file. However the user is reminded that BUD2HYD will only 

read such files if they were generated in COMPACT form by MODFLOW96 or later 

versions of MODFLOW. 

See Also 

See also BUD2SMP, MANY2ONE and SMP2HYD. 

 

 

Stress_period  Time_step  Elapsed_time  Flow_type  Flow_processed_by_BUD2HYD  

  1            1          10.500        STORAGE                no  

  1            1          10.500        CONSTANT HEAD          no  

  1            1          10.500        FLOW RIGHT FACE        no  

  1            1          10.500        FLOW FRONT FACE        no  

  1            1          10.500        FLOW LOWER FACE        no  

  1            1          10.500        WELLS                  no  

  1            1          10.500        DRAINS                 yes  

  1            1          10.500        RECHARGE               no  

  2            1          21.000        STORAGE                no  

  2            1          21.000        CONSTANT HEAD          no  

  2            1          21.000        FLOW RIGHT FACE        no  

  2            1          21.000        FLOW FRONT FACE        no  

  2            1          21.000        FLOW LOWER FACE        n o 

  2            1          21.000        WELLS                  no  

  2            1          21.000        DRAINS                 yes  

  2            1          21.000        RECHARGE               no  

  2            2          31.500        STORAGE                no 

  2            2          31.500        CONSTANT HEAD          no  

  2            2          31.500        FLOW RIGHT FACE        no  

  2            2          31.500        FLOW FRONT FACE        no  

  2            2          31.500        FLOW LO WER FACE        no  



BUD2SMP  25 

 

  

BUD2SMP 

Function of BUD2SMP 

BUD2SMP is very similar to BUD2HYD. However instead of producing a file ready 

for use by a commercial plotting package, it writes flow rates accumulated within 

model domain zones to a bore sample file. This file can be processed using 

SMP2HYD in order to produce time series files in plotting format if desired. 

However, given that this role is already performed by BUD2HYD, the most useful 

deployment of BUD2SMP is in conjunction with SMP2SMP to produce a bore sample 

file which is matched to an existing bore sample file based on field measurements. 

Through use of PESTPREP, PEST input files can then be automatically generated by 

which a groundwater model is calibrated against outflow/inflow data.  

Using BUD2SMP 

Because of its similarity to BUD2SMP, BUD2HYD will not be described in detail; 

the user is referred to the documentation of program BUD2HYD for operational 

principals. Only aspects of BUD2SMP usage which are different from that of 

BUD2HYD are described below. 

At a certain stage of its execution BUD2SMP prompts:- 

 Enter maximum number of output times:  

Through its OUTPUT CONTROL input dataset, MODFLOW is directed to provide 

cell-by-cell flow term output at the end of certain time steps. In response to the above 

prompt, you should inform BUD2SMP of the total number of time steps for which 

there is such cell-by-cell output. If you are unsure, simply enter a number that is likely 

to exceed the number of output times; BUD2SMP uses this number solely to 

dimension internal arrays. If the number is too large, it does not matter (except if it is 

so large that BUD2SMP runs out of memory). If it is too small, BUD2SMP will 

inform you of this later in its processing and ask that you run it again, supplying a 

higher number for this parameter.  

Note that BUD2SMP can only process cell-by-cell flow term files stored in 

COMPACT format by MODFLOW and later versions of MODFLOW. 

Like BUD2HYD, BUD2SMP prompts for an integer array pertinent to each layer. The 

model domain is divided into zones on the basis of integers assigned to various cells 

within the model domain. For each time step at which cell-by-cell flow term data was 

accumulated, BUD2SMP calculates the total flow within each of the non-zero zones 

defined within the supplied integer arrays; however the zero-valued zone (if it exists) 

is ignored as far as flow term accumulation is concerned. BUD2SMP records 

accumulated flows in a bore sample file, writing one entry for each zone for each time 

step for which flow data was recorded by MODFLOW. 



BUD2SMP  26 

 

  

In writing a bore sample file, BUD2SMP needs to know the ñbore identifierò to assign 

to each zone. So for each non-zero zone that it finds in the supplied integer arrays it 

prompts:- 

 Enter identifier for flows in zone n 

where n is a zone-defining number occurring within the integer arrays. Supply a name 

comprised of 10 characters or less; no two zones should be supplied with the same 

identifier. 

Like BUD2HYD, BUD2SMP writes two files. One is a bore sample file, the other is a 

file recording the details of all arrays found in the cell-by-cell MODFLOW output file. 

If you wish to simply know what arrays are present in this file without necessarily 

creating a bore sample file, run BUD2SMP, supplying a flow identification text string 

which does not match any of the array identifiers generated by MODFLOW ï see the 

documentation of BUD2HYD for more details. 

Flow rate data can be referenced to the beginning, middle or end of the time step in 

which it was recorded; see the documentation for program BUD2HYD for more 

details. 

Uses of BUD2SMP 

BUD2SMP can be very usefully deployed in a composite model together with PEST 

in estimating parameters on the basis of model inflows and outflows. The composite 

model will be comprised of MODFLOW followed by BUD2SMP followed by 

SMP2SMP. The last of these programs will generate a bore sample file in which 

model-generated flows are temporally interpolated to the dates and times of measured 

flows. Input file preparation for the PEST run then becomes a trivial task through the 

use of PESTPREP. 

See Also 

See also BUD2HYD, PESTPREP and SMP2SMP. 

 



BUD2SMP1  27 

 

  

BUD2SMP1 

BUD2SMP1 is identical to BUD2SMP except for the fact that it reads a single integer 

array pertinent to all layers rather than a different integer array for each layer. It is thus 

easier to use with models that have a large number of layers. 

In all other respects its use and functionality are identical to that of BUD2SMP. 



CONC2ELEV  28 

 

  

CONC2ELEV 

Function of CONC2ELEV 

CONC2ELEV was built primarily for use with the SEAWAT model (which is an 

amalgam of MODFLOW and MT3D). It performs the converse operation to the 

ELEV2CONC utility. It reads a set of concentration arrays written by SEAWAT (that 

is, the MT3D component of SEAWAT) and computes the elevation of the 

freshwater/saltwater interface, this being identified according to a user-specified 

concentration threshold (for example a concentration half way between that of fresh 

water and salt water). It writes the interface elevation to a MODFLOW-compatible 

real array. It writes some further information pertaining to the location of this interface 

to another file for use by other model post-processing software. 

Using CONC2ELEV 

Execution of CONC2ELEV is commenced by typing its name at the screen prompt. It 

then asks the user a series of questions. If, in response to any of these questions, the 

response is simply ñeò followed by the <Enter> key, execution of CONC2ELEV 

returns to its previous prompt. Thus recovery from mistaken input is a simple matter. 

Upon commencement of execution CONC2ELEV looks for a file named settings.fig 

in the directory from which its execution was initiated. As explained in Part A of this 

manual, this file informs members of the Groundwater Data Utilities of the necessity 

(or otherwise) for inclusion of a number-of-columns, number-of-rows header in real 

and integer array files which they read/write. It also informs them of which date 

format to employ (this being ignored by CONC2ELEV as this program does not read 

or write dates.) 

Like most programs of the Groundwater Data Utility suite, CONC2ELEV begins 

execution with the prompt:- 

 Enter name of grid specification file:  

If a ñfilenames fileò named files.fig is present in the directory from which 

CONC2ELEV is run, the name of a default grid specifications file may be included in 

the above prompt. This can be accepted simply through pressing the <Enter> key in 

response to the above prompt. 

Next CONC2ELEV asks:- 

 Enter upper layer for processing:  

 Enter lower layer for processing:  

 

Reply to each of these prompts with an integer between and including 1 and the 

number of layers in the model, with the second integer greater than the first. 

CONC2ELEV will only search for the freshwater/saltwater interface between the 

nominated layers. (This can be useful where different interfaces exist in different 

geological units separated by an aquitard; if there are indeed multiple interfaces within 



CONC2ELEV  29 

 

  

the sequence of layers in which CONC2ELEV undertakes its search, then it will only 

provide the elevation of the highest of these interfaces.) 

CONC2ELEVôs next prompt is: 

 Enter filename  base for layer Nu to Nl  bottom elev arrays:  

In this prompt Nu is one less than the layer number of the upper model layer supplied 

above, while Nl is equal to the lower layer number supplied above. In responding to 

this prompt it is assumed that the bottom elevation of the layer above the uppermost 

layer of interest is equal to the elevation of the top of that layer. Where the uppermost 

layer of interest is layer 1, Nu is 0. 

Suppose that the user responds to the above prompt with the string ñbottomò. Then 

CONC2ELEV looks to files bottomN.ref where N ranges from Nu to Nl for these 

arrays. Thus if the search for the freshwater/saltwater interface is to take place over 

layers 1 to 15, CONC2ELEV will read files bottom0.ref, bottom1.ref é.bottom15.ref. 

These arrays can be easily extracted from a MODFLOW discretisation file using the 

MOD2ARRAY utility described elsewhere in this manual. (As is the usual 

convention, a number-of-columns, number-of-rows header is expected in each of these 

arrays if the COLROW variable in file settings.fig is set to ñyesò.) 

CONC2ELEV reads concentration arrays for all layers of interest from an MT3D 

unformatted output file (i.e. a ñUCN fileò).  It next prompts for the name of this file, 

and the simulation time for which these arrays must be read. 

 Enter name of unformatted MT3D concentration file:  

 Enter simulation time to read arrays for:  

It then asks:- 

 Enter threshold concentration defining interface:  

 Enter threshold concentration defining inactive cell:  

When computing the elevation of the interface in any vertical column of the finite 

difference grid, CONC2ELEV starts at the highest active cell and works downwards. 

It recognises active cells as those for which the absolute value of concentration is 

below a certain threshold. Obviously this threshold must be higher than any 

concentration likely to be computed by the model; the user should keep this in mind 

when assigning a value to the MT3D CINACT variable. Setting this variable to 1E30 

is normally a safe option. 

In searching downwards through a particular vertical column of the model, 

CONC2ELEV records the location at which the concentration increases above a user-

supplied threshold as the location of the interface. If this threshold is crossed between 

cell centres, CONC2ELEV estimates the elevation of the crossing of this threshold 

through linear interpolation between cell elevation midpoint elevations. A problem 

arises however if, for the first active cell encountered, the concentration is already 

above the user-specified interface threshold concentration. In this case CONC2ELEV 

will either provide an interface elevation that is equal to that of the midpoint of the 

highest active cell, or will provide a dummy elevation value, its choice in this matter 

being governed by the userôs response to the following prompt:- 

Use dummy value or cell midpoint elev when interface above/below top/bottom  

  active cell centre? [d/m]:  



CONC2ELEV  30 

 

  

If the ñdò option is selected, CONC2ELEV then asks:- 

 Enter dummy value for above top cell centre:  

 Enter dummy value for below bottom cell centre:  

in response to which appropriate values should be supplied. An advantage of the ñcell 

midpoint elevationò option is that the interface elevation will not show discontinuous 

changes in any cell if, in response to a parameter change, the interface elevation rises 

higher than the highest active cell centre or drops below the lowest active cell centre 

as parameters are changed; this is useful if the interface elevation at certain locations 

is part of a calibration dataset used by PEST for estimating model parameters. 

After it has computed the elevation of the interface in every vertical column in which 

at least one active cell exists, CONC2ELEV prompts for the name of its output file. 

The prompt is:- 

 Enter name for interface elevat ion real array output file:  

This is a real array like any other (which can be formatted or unformatted, and will 

contain a number-of-columns, number-of-rows header or not, depending on the 

COLROW setting in file settings.fig). A dummy value of 1E35 is assigned to any 

element of this array for which no cell within the corresponding column of the finite 

difference grid is active (and for which computed concentration information is 

therefore unavailable). 

After having written this file CONC2ELEV asks:- 

 Enter name for row/column intersection file:  

The ñrow/column intersection fileò provides information on the location of the 

interface along each row and column of the finite difference grid within each model 

layer. Part of such a file is shown below. 

Row interse ctions of interface for layer 3 ---- > 

      1      1    1         4848.029         5223.517         4380.713  

      2      1    1         4847.601         5273.146         4293.896  

      3      1    1         4846.760         5322.417         4206.874  

      4      1    1         4845.543         5371.363         4119.663  

      5      1    1         4844.005         5420.031         4032.291  

      6      1    1         4842.220         5468.486         3944.796  

      7      1    1         4840.262         551 6.790         3857.214  

      8      1    1         4838.201         5565.005         3769.582  

      9      1    1         4836.156         5613.234         3681.957  

     10      1    1         4834.279         5661.608         3594.415  

     11      1    1         4832.745         5710.280         3507.046  

     12      1    1         4831.732         5759.403         3419.937  

     13      1    1         4831.376         5809.095         3333.156  

     14      1    1         4831.732         5859.402         3 246.732  

     15      1    1         4832.745         5910.280         3160.636  

     16      1    1         4834.278         5961.608         3074.800  

etc  

Part of a row/column intersection file. 

The row/column intersection file is divided into two segments per layer. Row 

intersections are provided in one of these segments while column intersections are 

provided in the other. 

Within each segment there are as many entries as there are rows or columns within the 

model grid. The first entry on each line is the row or column number. Then follows 



CONC2ELEV  31 

 

  

the number of interface intersections along that row or column. Suppose that this 

number is N; then N groups of 5 entries follow. The first member of each of these 

subgroups of 5 is an integer, this depicting the ñintersection typeò; this is ñ1ò if 

concentration rises across the interface and ñ-1ò if concentration falls across the 

interface (in the direction of increasing column or row index along each row or 

column respectively). Then follows the distance of the interface from either the left 

margin of the grid (in the case of rows) or the top of the grid (in the case of columns). 

Following that are the easting, northing and elevation of the interface along the row or 

column centre line. The location of the interface along a row or column centre line is 

determined as that point where the interface concentration threshold is encountered; 

where this is not encountered exactly at a cell centre, the location is determined 

through horizontal linear interpolation between cell centres. Because computed cell 

concentrations are employed in performing these calculations, and because 

concentrations are notionally assigned to the centre of each cell, interface elevations 

recorded in the row/column interface file effectively pertain to layer vertical midpoints 

(the locations of which may not be constant along each row or column of the grid). 

Where the freshwater/saltwater interface occurs between cell centres, layer vertical 

midpoint elevation is obtained through linear interpolation of cell midpoint elevations. 

There is one idiosyncrasy of CONC2ELEVôs interface computation algorithm of 

which the user should be aware. If active cells are underlain by inactive cells, to be 

underlain by active cells again, and if the concentrations in upper level active cells are 

all below the interface threshold concentration while those in the lower cells are all 

above the interface threshold concentration, CONC2ELEV will assign the interface 

elevation a value equal to the elevation of the midpoint of the uppermost of the lower 

group of cells, or the upper dummy concentration as specified by the user (according 

to the option selected by the user above). This unusual situation can, under some 

circumstances, lead to discontinuities in interface elevation with changes in 

parameters if these changes cause the interface to encroach into the upper group of 

layers. However this situation is considered to be atypical. 

Uses of CONC2ELEV 

The elevation of the freshwater/saltwater interface is a somewhat abstract notion as 

concentrations change gradually with depth; furthermore complex groundwater flow 

patterns take place in the vicinity of this interface. Nevertheless, this quantity is often 

provided as an outcome of measurements taken in monitoring wells, and hence has the 

potential to be useful in both the model calibration process and in the assignment of 

initial concentrations to the model domain. CONC2ELEV can be run as part of a 

model calibrated by PEST when interface elevations are used in the former capacity. 

CONC2ELEVôs sister program ELEV2CONC can be used in the latter capacity. 

See Also 

See also ELEV2CONC, MOD2ARRAY. 

 



DAR2SMP  32 

 

  

DAR2SMP 

Function of DAR2SMP 

DAR2SMP translates FEFLOW outputs to bore sample file format. It is assumed that 

these outputs pertain to observation wells whose coordinates and other details have 

been provided to FEFLOW by the user. Once translated to this format, the following 

operations are easily implemented, either as part of the model run by PEST through 

the calibration process, or prior to the calibration process as part of PEST pre-

processing:- 

1. temporal interpolation of FEFLOW-calculated quantities to the times at which 

field-measured counterparts to these quantities were actually observed (see the 

SMP2SMP utility); 

2. mathematical manipulation of these quantities, including digital filtering (see 

the TSPROC package belonging to the PEST Surface Water Modelling Utility 

suite); 

3. automatic construction of all or part of a PEST input dataset (see the 

PESTPREP, PESTPREP1 and PESTPREP2 utilities). 

DAR2SMP reads an ASCII FEFLOW-generated ñDARò file containing ñreduced 

computational resultsò. To write this file, FEFLOW must be run using a command 

such as:- 

feflow - run - hide - work c: \ feflow - steps tstep1.pow - dar output .dar new.fem  

Run FEFLOW using the command:- 

feflow ïhelp  

to see more FEFLOW usage details. Note that for both of the above commands, either 

the ñfeflowò string should be prefixed by the name of the directory containing the 

FEFLOW executable, or this directory should be including in the PATH environment 

variable. 

Using DAR2SMP 

DAR File Format 

When building a FEFLOW model, the user can provide FEFLOW with the locations 

of wells in which field measurements have been made. In any particular study area 

these wells are, of course, designated according to local naming conventions. 

However in FEFLOW they are simply numbered. The first part of a DAR file lists 

these wells, together with their global and local coordinates. Part of a DAR file table 

in which this information is recorded is depicted below. 



DAR2SMP  33 

 

  

 

+++++++++++++++ FEFLOW Computational Results +++++++++++++  

Problem file: new.fem  

Thu May 17 08:57:53 2007  

NT Rural Groundwater Modelling  

Three Dimensions (3D)  

********************************************************************  

LOCATION (GLOBAL AND LOCAL) OF  OBSERVATION AND WELL POINTS: 

--------------------------------------------------------------------  

 Obs    x_g [m]      y_g [m]      x_l [m]      y_l [m]      z [m]  

--------------------------------------------------------------------  

  1 725009.800000 8613 460.100000 27509.800000 20960.100000   - 49.003606  

  2 725729.800000 8614470.100000 28229.800000 21970.100000   - 47.903440  

  3 728149.800000 8614850.100000 30649.800000 22350.100000   - 42.492337  

  4 729849.800000 8615060.100000 32349.800000 22560.100000   - 43.092606  

  5 732589.800000 8615720.100000 35089.800000 23220.100000   - 47.455392  

  6 726989.800000 8613570.100000 29489.800000 21070.100000   - 44.826290  

  7 726979.800000 8612350.100000 29479.800000 19850.100000   - 48.183831  

  8 725544.800000 8616900.1000 00 28044.800000 24400.100000   - 46.949874  

  9 726979.800000 8615640.100000 29479.800000 23140.100000   - 45.178760  

 10 722929.800000 8622050.100000 25429.800000 29550.100000   - 20.176454  

...  

  a 743629.700000 8631110.100000 46129.700000 38610.100000   - 27.9 16524  

  b 738231.000000 8625986.000000 40731.000000 33486.000000   - 25.045553  

  c 741129.700000 8623960.100000 43629.700000 31460.100000   - 29.669442  

  d 724289.800000 8623060.100000 26789.800000 30560.100000   - 16.071621  

  e 724169.800000 8622810.100000 2 6669.800000 30310.100000   - 16.169266  

  f 724399.800000 8622640.100000 26899.800000 30140.100000   - 16.657809  

  g 724679.000000 8622635.000000 27179.000000 30135.000000   - 16.809188  

...  

_28 724649.800000 8621187.600000 27149.800000 28687.600000   - 18.19376 5 

_29 724859.800000 8621260.100000 27359.800000 28760.100000   - 18.493536  

_30 725112.880000 8621264.470000 27612.880000 28764.470000   - 18.636139  

Start of a FEFLOW-generated DAR file. 

In a table such as the above, observation wells are indexed using positive integers 

starting at 1. Alphabetical indices, followed by integer indices with a leading 

underscore, pertain to entities at which water flows in or out of the model domain 

(such as wells and various boundary condition types); these are ignored by 

DAR2SMP. 

The well location table that leads a DAR file is followed by a sequence of data tables, 

one pertaining to each FEFLOW time step, and/or to each time for which FEFLOW 

output is requested. Part of such a table appears below. 



DAR2SMP  34 

 

  

 

 *************************** ********************************  

 RESULTS AT STEP =  14  AND TIME = 31.0000  [d]:  

 -----------------------------------------------------------  

  Obs    H [m]         Vx [m/d]      Vy [m/d]      Vz [m/d]  

 ----------------------------------------------------- ------  

   1 2.209652e+001 - 1.244975e - 003 1.977176e - 002 - 3.782298e - 005  

   2 2.032368e+001 5.296040e - 003  2.186053e - 002 - 1.050942e - 004  

   3 1.931409e+001 2.065794e - 003  1.527837e - 002 - 5.245243e - 005  

   4 1.848264e+001 1.652906e - 003  1.252860e - 002  9.043694e - 005 

   5 1.863514e+001 - 1.191209e - 003 3.790130e - 003 - 5.312853e - 005  

   6 1.982329e+001 - 8.428071e - 003 3.890173e - 003  2.724540e - 003  

   7 2.438048e+001 1.637838e - 003  2.121529e - 002 - 6.158893e - 005  

   8 1.511694e+001 7.684201e - 003  3.962595e - 002 - 1.738366e - 005  

   9 1.771841e+001 5.037181e - 004  2.848033e - 002 - 1.012546e - 004  

  10 6.436490e+000 - 1.158686e - 002 8.368673e - 002  7.140338e - 005  

   a 6.604564e+000 (single well: 7.218000e - 001 [m3/d])  

   b 1.044103e+001 (single well: 0.000000e+000 [m3/d])  

   c 5.317448e+000 (s ingle well: 0.000000e+000 [m3/d])  

   d 5.339259e+000 (single well: 0.000000e+000 [m3/d])  

   e 5.614646e+000 (single well: 0.000000e+000 [m3/d])  

   f 5.806405e+000 (single well: 0.000000e+000 [m3/d])  

   g 5.812766e+000 (single well: 0.000000e+000 [m3/d])  

 _28 7.676518e+000 (single well: 7.218000e - 001 [m3/d])  

 _29 7.566448e+000 (single well: 0.000000e+000 [m3/d])  

 _30 7.531137e+000 (single well: 7.218000e - 001 [m3/d])  

  

Part of the output dataset pertaining to a particular FEFLOW time step. 

In the above example only four quantities computed by FEFLOW for each observation 

well are listed at each time step. In other cases other quantities may also be listed (for 

example FEFLOW-calculated concentrations). Any of these can be read by 

DAR2SMP (but only one of these on any particular DAR2SMP run). As is 

documented below, the column to be read by DAR2SMP is specified by its header; in 

the above case there are four headers, namely ñHò, ñVxò, ñVyò and ñVzò. (DAR2SMP 

ignores the units that accompany each header.) 

Running DAR2SMP 

DAR2SMP is run by typing its name at the command prompt. As for other members 

of the Groundwater Data Utilit y suite, information must be supplied by the user in 

response to questions posed by DAR2SMP. If the response to any such question is 

simply ñeò or ñEò followed by <Enter>, DAR2SMP will backtrack to its previous 

question, whereupon any mistakes made by the user in answering that question can be 

rectified. 

Immediately upon commencement of execution, DAR2SMP checks for the presence 

of a ñsettings fileò named settings.fig in the directory from which it is run. As is 

described in Part A of this manual, this informs DAR2SMP (and other utilities) 

whether to use the ñdd/mm/yyyyò or ñmm/dd/yyyyò convention in specifying dates. 

Optionally, a settings file also informs any program which reads it whether a ñnumber 

of columns, number of rowsò header is expected in MODFLOW-compatible integer 

and real arrays; this setting has no relevance in the FEFLOW context and is therefore 

not required in a settings file read by DAR2SMP. A typical settings.fig file is shown 

below. 



DAR2SMP  35 

 

  

 

date=dd/mm/yyyy  
 

 A typical settings.fig file. 

Once it has read the settings file, DAR2SMP asks:- 

 Enter name of FEFLOW DAR file:  

in response to which the name of the DAR file to be processed by DAR2SMP should 

be supplied (surrounded by quotes if it contains spaces). Next DAR2SMP asks for the 

type of data which it should read from each time-specific output table. The prompt is: 

 Enter header for data type to extract from this file:  

Respond with the appropriate header. In responding to this prompt, note the following. 

1. Do not include the time units which accompany each header. 

2. You do not need to match the case of header character(s) to those provided in 

DAR file output tables. 

Next DAR2SMP asks for the name of an ñobservation number to bore identifier 

conversionò file. The prompt is:- 

 Enter name of obs number to boreid conversion file:  

This is a file which relates observation well numbers as employed by FEFLOW to 

user-specified bore identifiers. Part of such a file is depicted in the following figure. 

   
 # FEFLOW_ID   DATABASE_ID  

    1           BH100435  

    2           BH245822  

   17           BH173452B  

   30           BH305544  

   40           BH406788  

   50           BH503453  

  164           BH16 4567  

 Part of an ñobservation number to bore identifierò file. 

The ñobservation number to bore identifier fileò is easily prepared with a text editor. It 

should contain two columns, the first being observation well numbers as listed by 

FEFLOW, the second being bore identifiers as they are known by the user. The 

following aspects of this file should be noted. 

1. Blank lines, and lines beginning with a ñ#ò character (such as the optional 

header in the above example) are ignored by DAR2SMP. 

2. A bore identifier must be 10 characters or less in length so that it conforms 

with bore sample file protocol. 

3. There is no need for FEFLOW observation well numbers (first column in the 

ñobservation number to bore identifierò file) to be provided in increasing 

order. 



DAR2SMP  36 

 

  

4. A non-integer or negative integer FEFLOW observation well number is not 

allowed. 

5. There is no need for all FEFLOW observation well numbers featured in a 

DAR file to be listed in an ñobservation number to bore identifierò file. 

Observation well numbers which are not associated with a bore identifier are 

simply ignored by DAR2SMP. 

6. If a FEFLOW observation well number provided in an ñobservation number to 

bore identifierò file is not represented in a FEFLOW DAR file, it is simply 

ignored by DAR2SMP. 

DAR2SMP next asks:- 

 Enter simulation starting date [dd/mm/yyyy]:  

 Enter simulation starting time [hh:mm:ss]:  

(Note that the date protocol presented in the first of the above prompts will depend on 

that provided in file settings.fig.) DAR2SMP needs the above information so that it 

can convert elapsed simulation times as provided in DAR file data tables to dates and 

times as required in a bore sample file. 

Finally DAR2SMP asks:- 

 Enter name for bore sample output file:  

Once you have provided this name, DAR2SMP writes the bore sample file as 

requested. An entry is provided in this file for each bore listed in the ñobservation to 

bore identifierò file, for each output time appearing in the FEFLOW DAR file. Use of 

the SMPCHEK utility will readily verify that the DAR2SMP output file is a valid bore 

sample file. 

Uses of DAR2SMP 

DAR2SMP comprises part of the FEFLOW PEST interface, other members of which 

are PPK2FAC_FEFL and FAC2FEFL.  

As stated above, once FEFLOW data has been re-written in bore sample file format it 

is amenable to further processing by other members of the Ground and Surface Water 

Utility  suites. For example the SMP2SMP utility can be employed for temporal 

interpolation to the times at which observations were made in the field; both 

DAR2SMP and SMP2SMP should then be run in sequence behind FEFLOW as part 

of the composite model calibrated by PEST. If this is done, automation of PEST input 

file construction for even a complex inversion problem then becomes a simple matter. 

See documentation of the PESTPREP, PESTPREP1 and PESTPREP2 utilities for 

more details. 

See Also 

See also PPK2FAC_FEFL, FAC2FEFL, SMP2SMP, PESTPREP, PESTPREP1 and 

PESTPREP2. 



ELEV2CONC  37 

 

  

ELEV2CONC 

Function of ELEV2CONC 

ELEV2CONC was written to facilitate computation of initial concentrations for a 

multi-layer SEAWAT (or MT3D) model. It is assumed that the elevation of the 

freshwater/saltwater interface (or a surrogate for this interface calculated as, for 

example, a threshold concentration that is half way between that of freshwater and 

seawater) is available at a number of wells within a model area. It is also supposed 

that these wells provide information on the width of the transition zone between fresh 

and salt water. From these (together with other information from which the elevation 

of the interface may be surmised at other locations within the model domain or at its 

boundaries), a two-dimensional map of interface elevations may be made. From this 

information, a model-compatible real array of interface elevations can then be built. 

From this real array, together with interface width information, a three-dimension 

distribution of salt concentration can be established. This can then be supplied to a 

SEAWAT model as its concentration starting condition. 

Using ELEV2CONC 

Like all programs of the Groundwater Data Utility Suite, upon commencement of 

execution ELEV2CONC looks for a file named settings.fig in the directory from 

which its execution was invoked. This file informs ELEV2CONC whether (or not) a 

number-of-columns, number-of-rows header should be present in formatted real and 

integer arrays which it writes and reads. If this file is not present, ELEV2CONC 

ceases execution with an appropriate error message. 

Also, if files.fig is present, ELEV2CONC will read the name of the grid specification 

file for the current model from this file. However it is not essential that this file be 

present. 

After having checked for the presence of both of these files, ELEV2CONC requests 

information from the user through a series of prompts. As for all programs of the 

Groundwater Data Utilities suite, responding to any of these prompts by simply 

pressing ñeò followed by <Enter> will force ELEV2CONC to backtrack to its 

previous prompt. This allows easy recovery from mistaken input. 

ELEV2CONCôs first prompt is:- 

 Enter name of grid specificat ion file :  

ELEV2CONC needs to read this file so that it can obtain the horizontal dimensions of 

the model grid. Next it asks for the vertical dimension of the model grid. 

 Enter number of layers in model:  

and then for the number of model layers for which initial concentrations are actually 

to be computed on the current ELEV2CONC run. These are bounded by an upper and 

lower model layer, the numbers for which must be supplied in response to the 

following prompts:- 



ELEV2CONC  38 

 

  

 Enter lower layer number for present analysis :  

 Enter upper layer number for present analysis:  

(Note that a lower layer number overlies a higher layer number, as 

MODFLOW/MT3D grid layer numbers increase downwards from the surface.) 

ELEV2CONC must then ascertain which cells within the model domain are active, 

and which are inactive, for it needs to compute initial concentrations only within 

active cells. (It assigns inactive cells a concentration of zero.) As well as this, it needs 

to know which cells are constant concentration cells. As is the usual convention, these 

are identified through their negative values in integer activity arrays. So 

ELEV2CONC asks:- 

 Enter filename base for activity arrays:  

Suppose that the response to the above prompt is the string ñactivityò. ELEV2CONC 

then looks for arrays named activityN.inf where N ranges between Nu and Nl, these 

being the lower and upper model layers respectively for which initial concentrations 

must be computed. These arrays must be supplied in formatted (i.e. ASCII) form in 

these files. Furthermore, if the COLROW variable in settings.fig is set to ñyesò, these 

files must each contain a number-of-columns, number-of-rows header. (Note that 

these files can be written automatically on the basis of information contained within a 

MODFLOW or MT3D input file using the MOD2ARRAY utility.) 

In order to translate freshwater/saltwater interface elevations to initial concentrations, 

ELEV2CONC must know the elevations of pertinent model layers. So it asks:- 

 Enter filename base of  layer bottom elevation arrays:  

Suppose that the response to the above prompt is the string ñbottomò. ELEV2CONC 

then looks for arrays named bottomN.ref where N ranges between Nu-1 and Nl, (The 

bottom of layer Nu-1 is assumed to be the top of layer Nu. If Nu is 1 then the elevation 

of the top of the model should be supplied in file bottom0.ref if the ñbottomò string is 

supplied in response to the above prompt as discussed above.) Like activity arrays, 

these arrays can be extracted from a MODFLOW or MT3D input file using the 

MOD2ARRAY utility. 

ELEV2CONCôs next prompt is:- 

 Enter name of interface elevation array file:  

Supply the name of a file containing the required real array. This array will normally 

have been produced through spatial interpolation of interface elevation measurements 

(see below); alternatively it may have been produced using the CONC2ELEV utility. 

The freshwater/saltwater interface is by no means a sharp interface. On traversal of 

any vertical line which intersects this interface, the concentration rises gradually from 

that of fresh water to that of salt water as the interface is crossed. This vertical 

ñsmudgingò of the interface must be reflected in initial concentrations supplied to the 

model. Three types of ñsmudgingò are allowed by ELEV2CONC, namely linear, 

sigmoidal and exponential. The user chooses between these through his/her response 

to the following prompt. 

 Enter nature of concentration variation across interface: -  

      if linear      -  enter 1  

      if sigmoidal   -  enter 2  



ELEV2CONC  39 

 

  

      if exponential -  enter 3  

 Enter your cho ice:  

The actual width of the interface can be supplied as a single number (which is then 

applied throughout the entire model domain), or on a cell-by-cell basis. ELEV2CONC 

prompts:- 

 Enter interface width value or formatted real array file:  

In response to this prompt supply a real number greater than zero, or the name of a 

file. If ELEV2CONC cannot interpret your response as a number it will presume that a 

filename has been supplied, and that this file contains a real array in formatted (i.e. 

ASCII) form. If the COLROW variable in settings.fig is set to ñyesò, then a number-

of-columns, number-of-rows header is expected in this file. 

The figure below illustrates the different types of concentration profile computed by 

ELEV2CONC. 

 

 

Types of concentration profile across freshwater/saltwater interface. 

If the ñlinearò option is selected, the concentration varies linearly over the distance 

between an elevation of w/2 above the user-supplied interface elevation and w/2 

below the user-supplied interface elevation. Outside of these limits the concentration 

is that of freshwater (above) and sea water (below) respectively. Similarly, for the 

ñsigmoidalò option, variations are limited to within a distance of w/2 of the interface, 

with concentration changes within this zone simulated as a quarter cycle of a sine 

wave. If the exponential option is chosen, concentrations approach those of fresh 

water and sea water asymptotically with ninety percent of the total change in 

concentration incurred over the interface width w. In all of these cases, the 

w interface 

linear                    sigmoidal          exponential 



ELEV2CONC  40 

 

  

concentration at the interface itself is half way between that of fresh water and sea 

water. 

ELEV2CONC next asks for the concentrations of fresh water and sea water 

respectively. As for the interface width, either a single value can be supplied, or the 

name of a file which holds an array of cell-by-cell values can be supplied. As for the 

interface width, this must be an ASCII file, with a number of columns, number-of-

rows header if the COLROW setting in settings.fig is set to ñyesò. The prompts are:- 

 Enter fresh water concentration value or formatted real array file:  

 Enter sea  water concentration value or formatted real array file:  

ELEV2CONC next asks:- 

 Enter filename base for formatted output files:  

Suppose that the response to this prompt is ñconcò. Then ELEV2CONC writes a 

series of formatted real array files named concN.ref where N varies between Nu and Nl. 

Each such file carries concentrations in the specified (by N) layer. However as well as 

recording the outcomes of its concentration calculations in this format, ELEV2CONC 

also records these in unformatted (i.e. binary) form as an MT3D ñUCNò file. It asks 

for the name of the file to which concentrations must be thus recorded using the 

following prompt:- 

 Enter name for unformatted output file:  

This file can be easily imported into a MODFLOW/MT3D graphical user interface for 

display, and for incorporation into a SEAWAT input dataset. (ELEV2CONC assigns a 

notional transport step, stress period, time step and simulation time of 1 to the 

concentration arrays recorded in this file.) However if initial concentration 

calculations have been restricted to a subset of model layers, ELEV2CONC cannot 

write this file unless it acquires knowledge of initial concentrations in other layers. So, 

if this is the case, it asks:- 

 Enter existing conc array filename base of unanalysed layers:  

Suppose that a filename base of ñinitò is supplied in response to this prompt. Then 

ELEV2CONC will attempt to read formatted real array files init1.ref, 

init2.ref,éinitN.ref etc where N is any integer value between 1 and NLAY (the 

number of layers in the model) EXCEPT for numbers between and including Nu and 

Nl. (This sequence of files may have been produced on previous ELEV2CONC runs.) 

Once it has received all of this information, ELEV2CONC computes initial 

concentrations in all active cells in all nominated layers of the finite-difference grid. It 

then writes formatted concentration output files for all such layers, and its single 

binary output file in MT3D UCN format. Once it has finished these tasks it ceases 

execution. 

The following item of ELEV2CONC functionality should be carefully noted. When 

assigning concentrations to cells within the model domain, all fixed concentration 

cells (identified through negative numbers in activity arrays) are assigned a 

concentration equal to that of sea water, this being based on the assumption that fixed 

concentration cells are always part of the seaward model boundary. If this is not the 

case, concentrations assigned to these cells by ELEV2CONC must be modified either 



ELEV2CONC  41 

 

  

by other utility software, or manually after importation of initial concentrations into a 

graphical user interface. Alternatively, remove negative values from activity arrays 

before supplying them to CONC2ELEV. 

Uses of ELEV2CONC 

As stated above, the primary use of ELEV2CONC is computation of initial 

concentrations for a SEAWAT model. Proper computation of initial concentrations is 

important to this type of modelling, for then SEAWAT does not need to spend the 

first part of its run adjusting these concentrations from possibly infeasible initial 

values. Alternatively, if initial concentrations are computed on the basis of a steady 

state flow field, the time required for convergence to a corresponding concentration 

field can be reduced considerably if initial concentrations for this early part of the 

model run are close to those actually calculated on the basis of the flow field. 

The freshwater/saltwater elevation array can be computed in a variety of ways based 

on interface elevations observed in wells, and on elevations of the coastal boundary 

condition where the freshwater/saltwater interface outcrops. Spatial interpolation can 

be carried out using, for example, the SURFER package; conversion to 

MODFLOW/MT3D real array format can then be implemented using the SRF2REAL 

utility. Alternatively, spatial interpolation could be undertaken using kriging as 

implemented by the PPK2FAC and FAC2REAL utilities described herein. 

See Also 

See also MOD2ARRAY, CONC2ELEV, SRF2REAL, PPK2FAC and FAC2REAL. 

 



ELEV2CONC1  42 

 

  

ELEV2CONC1 

Function of ELEV2CONC1 

The function of ELEV2CONC1 is almost identical to that of ELEV2CONC. However 

it computes (and records) a further set of output files, these being ñzero flow headò 

arrays for a sequence of layers comprising a hydrostratigraphic unit of interest.  

The ñzero flow headò assigned to a cell is the head, computed for water that actually 

occupies that cell, that is equivalent to a salt water head of zero. Thus if:- 

1. the lower boundary of a model domain is a coastal fixed head boundary at 

which the saltwater head is zero, and 

2. there is actually no flow towards this boundary, 

this would be the head in every active cell of the model.  

ELEV2CONC1 was written for use in conjunction with SEAWAT. If ELEV2CONC1 

zero flow head files are to serve as SEAWAT initial head input files (which they are 

designed to do), then cell-by-cell heads must be in accord with cell-by-cell salt 

concentrations; that is, head must be expressed in terms of the water that actually 

occupies the cell, irrespective of its concentration. 

The relationship between head h and freshwater head hf  is defined by the equations 

(taken from the SEAWAT manual):- 

Zhh
f

f

f

f
r

rr

r

r -
-=   

 

Zhh
f

f

f

r

rr

r

r -
+=  

where Z is the elevation of the measurement point (which are cell centres in the 

current context), ɟ is the density of water at the measurement point, and ɟf is the 

density of fresh water. The density of water is related to its concentration C by:- 

 ɟ = ɟf
  
+ k(C ï Cf) 

where Cf is the concentration of salt in fresh water and k is the slope of the 

density/concentration relationship (which is equal to 0.7143 if mass is measured in kg 

and volume is measured in m
3
). If Cf is zero, this equation becomes:- 

 ɟ = ɟf
  
+ kC 



ELEV2CONC1  43 

 

  

With a little mathematical manipulation it is easy to show that the head in a cell whose 

salt concentration is C and whose salt water (defined as water with a concentration of 

Cs) head is zero is given by:- 

( )
kC

ZCCk
h

f

s

zf
+

-
=
r

 

Using ELEV2CONC1 

Use of ELEV2CONC1 is similar to that of ELEV2CONC. However ELEV2CONC1 

asks four extra questions of the user, and provides an additional set of outputs. 

Defaults are provided for three of these four questions. These questions are:- 

 Enter density of water of zero concentration ( <Enter> if 1000):  

 Enter concentration of water at zero head (<Enter> if 35):  

 Enter delta - density/delta - concentration slope (<Enter> if 0.7143):  

The ñconcentration of water at zero headò is Cs in the above equations. Any cell 

within the model domain whose water concentration is Cs, is assigned a head of zero 

by ELEV2CONC1; for any cell with a lower concentration, the head is slightly higher 

than this (because of the lower density of the water). 

The other ELEV2CONC1 prompt that is absent from ELEV2CONC is:- 

 Enter filename base for formatted "zero flow head" output files:  

ELEV2CONC1 writes a series of formatted real array files, one for each of the layers 

on which ELEV2CONC1 calculations are focussed (these being specified by the user). 

Each of these files has the above user-supplied basename. A suffix equal to the layer 

number is appended to this name, followed by the extension ñ.refò in accordance with 

the convention employed by programs of the Groundwater Data Utility suite for 

storage of formatted real arrays. 

Uses of ELEV2CONC1 

Uses of ELEV2CONC1 are similar to those of ELEV2CONC, for ELEV2CONC1 can 

do everything that ELEV2CONC can do, and more. The ñmoreò is the production of 

ñzero flow headò arrays.  

ELEV2CONC1 can be employed for generation of initial concentration arrays for a 

SEAWAT model. If this is done, however, the problem remains of generation of 

initial heads arrays. If initial concentrations are assumed to be steady state (or 

approximately steady state), SEAWAT itself can be used to compute initial heads 

from initial concentrations if the initial stress period of the (coupled or uncoupled) 

SEAWAT model is steady state from the MODFLOW standpoint. Computation of 

initial heads by SEAWAT in this fashion requires, however, that heads supplied to it 

are correct in fixed head cells. Where the only fixed head cells in a model are along 

the coast, and where the saltwater heads in these cells are zero, the set of heads 

provided by ELEV2CONC1 are suitable starting heads from which SEAWAT can 

compute a steady state head field corresponding to the concentration field which 

ELEV2CONC1 produces. 



ELEV2CONC1  44 

 

  

See Also 

See also CONC2ELEV and ELEV2CONCl. 



FAC2FEFL  45 

 

  

FAC2FEFL 

Function of FAC2FEFL 

FAC2FEFL complements the PPK2FAC_FEFL utility in that it undertakes spatial 

interpolation from pilot points to elements of a FEFLOW mesh on the basis of kriging 

factors computed by PPK2FAC_FEFL. As such, it is often run as part of a ñcomposite 

modelò calibrated by PEST in which pilot point values for one or more material 

properties are estimated. 

Using FAC2FEFL 

Prompts and User Responses 

Use of FAC2FEFL is similar to that of other programs (for example FAC2REAL, 

FAC2RSM etc) which undertake spatial interpolation to a model grid or mesh based 

on pre-calculated kriging factors. Hence its use will not be described in detail herein. 

The description below focuses on differences between FAC2FEFL and other 

programs of the same type. See documentation for these other programs for further 

details. 

Typical FAC2FEFL screen output and user responses (the latter in bold italicised 

print) are provided below. 

 Program FAC2FEFL carries out spatial interpolation for a FEFLOW model based  

   on interpolation factors calculated by PPK2FAC_FEFL and pilot point   

   values  contained in a pilot points file.  

 

 Enter name of  interpolation factor file: factors.dat  

 Is this a formatted or unformatted file? [f/u]: f  

 

 Enter name of pilot points file [pp.dat]: pp.dat  

  -  data for 27 pilot points read from pilot points file pp.dat  

 

 Enter lower interpolation limit: 1e - 10 

 Enter up per interpolation limit: 1e10  

 

 Enter  name of existing FEM file: model .fem  

 Enter code for element list identification: ###  

 Enter name for new FEM file: temp.fem  

 

 -  interpolating from pilot points to finite element mesh...  

 -  reading existing FEM file an d writing new one...  

 

 -  file model .fem read ok.  

 -  file temp .fem written ok.  

The interpolation factor file read by FAC2FEFL must have been written by the 

PPK2FAC_FEFL utility. Furthermore, it should have been produced on the basis of 

the same set of pilot points from which interpolation is being implemented by 

FAC2FEFL. (FAC2FEFL will generate an error message to this effect if this is not the 

case.) 



FAC2FEFL  46 

 

  

FAC2FEFL assigns hydraulic property values to mesh elements. It then writes these 

values to a FEFLOW ñfemò file. In doing this, it replaces hydraulic property values 

already recorded in such a file with new ones obtained through the spatial 

interpolation process. Thus it reads an existing ñfemò file, and writes a new one. 

Details of this process are now discussed. 

The ñfemò File 

In specifying values assigned to mesh elements for a certain hydraulic property, the 

ñfemò file first provides a header in which the hydraulic property type is cited. Then 

follows a ñnode listò in which hydraulic property values assigned to individual 

elements are specified. Two examples are provided below. The first illustrates non-

uniform material properties, whereas the second illustrates uniform values for each 

cited property type. Notice that in both cases a real number (representing a hydraulic 

property value) is followed by the list of elements to which the property value 

pertains. Note also that a dash between element numbers indicates that all elements 

between (and including) the elements on either side of the dash are assigned the cited 

property value.  

 

MAT_I_FLOW 

101 0.000000e+000 "Conductivity in x - direction for 3D"  

  8.640000e - 010      3    40    47    54    57    60    61   151   178  

    438   453   471   473   475   476   478   480   487   489   511   512  

    691   793   79 4   845   850   895   936   949   951 -   953   955  

    961 -   966   997  1016  1017  1029  1033  1140  1208  1211  1215  1219  

   1222  1225  1573  1617  1619  1620  1627 -  1630  1633 -  1635  1637  1638  

   1780  1806  1881  1966  2152  2203  2211  2218 -  2224   2227  2239  2263  

   2275  2276  2280  2281  2288  2290  2292  2307  2341  2378  2389  2393  

   2403  2415  2427  2442  2510  2591  2607  2640  2658  2665  2700  2705  

etc  

 Material properties provided through a node list. 

 

 

MAT_I_FLOW 

101 0.000000e+000 "Conductivity in x - direction for 3D"   

  1.345678e - 006           1 - 92829  

103 0.000000e+000 "Conductivity in y - direction for 3D"  

  4.7845673 - 005      1- 92829  

105 0.000000e+000 "Conductivity in z - direction for 3D"  

  4.7845673 - 005      1- 92829  

etc  

Material pro perties provided through a node list. 

Before running FAC2FEFL, the user must edit the ñfemò file for the current model in 

order to provide a means of informing FAC2FEFL of the hydraulic property type(s) 

for which an existing node list must be replaced by a new one. This is achieved 

through inserting an ñelement list identificationò code on the first line of the 

respective node list. This is a string of five characters or less which identifies the list 

as subject to replacement. See the examples below (corresponding to those above) for 

which, in each case, the element list identifier is ñ###ò. (Note that this identifier is not 

transferred to the new ñfemò file which FAC2FEFL writes.) 



FAC2FEFL  47 

 

  

 

MAT_I_FLOW 

101 0.000000e+000 "Conductivity in x - direction for 3D"  

  8.64000 0e- 010      3    40    47    54    57    60    61   151   178 ###  

    438   453   471   473   475   476   478   480   487   489   511   512  

    691   793   794   845   850   895   936   949   951 -   953   955  

    961 -   966   997  1016  1017  1029  1033  11 40  1208  1211  1215  1219  

   1222  1225  1573  1617  1619  1620  1627 -  1630  1633 -  1635  1637  1638  

   1780  1806  1881  1966  2152  2203  2211  2218 -  2224  2227  2239  2263  

   2275  2276  2280  2281  2288  2290  2292  2307  2341  2378  2389  2393  

   2403  2415  2427  2442  2510  2591  2607  2640  2658  2665  2700  2705  

etc  

Material properties provided through a node list, and an element list 

identification code. 

 

 

MAT_I_FLOW 

101 0.000000e+000 "Conductivity in x - direction for 3D"   

  1.345678e - 006           1- 92829                        ###  

103 0.000000e+000 "Conductivity in y - direction for 3D"  

  4.7845673 - 005      1- 92829                        ###  

105 0.000000e+000 "Conductivity in z - direction for 3D"  

  4.7845673 - 005      1- 92829  

etc  

Material propert ies provided through a node list, and element list identification 

codes. 

The following should be noted. 

1. The element list identifier must be placed on the first line of the node list; it 

must not be placed on the hydraulic property header above this line, or on the 

second (or subsequent) lines of the node list. 

2. The sequence of up to five characters comprising an element list identifier 

must occur nowhere else within a ñfemò file, so that it can provide a unique 

means of identifying replaceable lists. 

3. Element list identifiers are easily added to a FEFLOW ñfemò file using a text 

editor. However the text editor must be capable of reading large files. It must 

also perform no gratuitous alterations to any other part of the file (e.g. 

replacement of tabs with spaces). 

4. More than one incidence of the same element list identifier can be placed in a 

single ñfemò file. Node list replacement on the basis of pilot-point-interpolated 

values will then take place for all such identified node lists. 

In replacing the identified node list with a new one, FAC2FEFL observes the 

following protocols. These should be carefully noted. 

1. If no kriging factors have been computed for a particular mesh element, the 

value assigned to that element in the existing node list is unaltered as the list is 

transferred to the new ñfemò input file. 



FAC2FEFL  48 

 

  

2. Whether or not interpolation factors have been ascribed to a particular mesh 

element, if that element is not cited within the existing node list, it will not be 

cited in the new node list. 

3. No aspect of the existing ñfemò file, other than node lists identified as above, is 

altered in building the new ñfemò file from the existing one. 

Running FEFLOW 

If FEFLOW is to be run repeatedly by PEST as part of a (possibly lengthy) calibration 

process, its execution must be activated using a system command. FEFLOW can, in 

fact, be run from outside its interface using a command such as the following:- 

feflow - run - hide - work c: \ feflow - steps tstep1.pow - dar temp.dar new.fem  

Run FEFLOW using the command:- 

feflow ïhelp  

for usage details. Note that for both of the above commands, either the ñfeflowò string 

should be prefixed by the name of the directory containing the FEFLOW executable, 

or this directory should be including in the PATH environment variable. 

Uses of FAC2FEFL 

FAC2FEFL, together with its sister program PPK2FAC_FEFL, comprises the 

mechanism through which pilot points can be employed for parameterisation of a 

FEFLOW model. This, in turn, can promulgate the use of more parameters in the 

calibration process than would otherwise be possible. As is described in PEST and 

ancillary documentation, the use of many parameters, rather than just a few, allows 

mathematical regularisation to be introduced to the inversion process. This in turn can 

lead to extraction of maximum information content from a calibration dataset (thereby 

leading to model predictions of greater likelihood), and the ability to quantify the 

potential error associated with such predictions. 

The DAR2SMP utility provides a means through which FEFLOW outputs can be 

rapidly processed for inclusion in a PEST-based calibration process. 

See Also 

See also PPK2FAC_FEFL, FAC2REAL, FAC2FEM, FAC2RSM and DAR2SMP. 

  

 

 



FAC2FEM  49 

 

  

FAC2FEM 

Function of FAC2FEM 

FAC2FEM carries out spatial interpolation from a set of pilot points to the nodes of a 

MicroFEM finite element mesh using kriging factors calculated by PPK2FACF. It 

writes to two kinds of MicroFEM input files, viz. a ñfemò file and a ñstoò file (or any 

file that has the same format as the latter type of file). When undertaking pilot-points-

based MicroFEM calibration using PEST, FAC2FEM must be run as part of a 

ñcomposite modelò (comprised of at least FAC2FEM and MicroFEM itself) under the 

control of PEST. 

Using FAC2FEM 

FAC2FEM commences execution with the prompts:- 

Enter name of in terpolation factor file:  

Is this a formatted or unformatted file?  

The interpolation factor file is written by PPK2FACF, which must be run before 

FAC2FEM in order to generate a set of kriging factors by which spatial interpolation 

from a set of pilot points to the MicroFEM finite element mesh can be carried out. 

Next FAC2FEM prompts for the name of the pilot points file containing data for 

interpolation to the mesh:- 

Enter name of pilot points file:  

FAC2FEM normally supplies the name of a pilot points file with this prompt ï the 

name of the same pilot points file as that used by PPK2FACF to generate the kriging 

factors (this filename is stored in the interpolation factor file). This default filename 

can be accepted by simply pressing the <Enter> key. 

FAC2FEM then prompts for the upper and lower interpolation limits:- 

Enter lower interpolation limit:  

Enter upper interpolation limit:  

If the value assigned to any node is above or below these limits, this value will be 

reduced or increased respectively in order to respect these limits. Care should be taken 

in supplying these limits. They can be useful when kriging is based on the Gaussian 

variogram; sometimes the range of kriged values can exceed that of the data values 

when using this variogram (which is why it is often best to use the exponential or 

spherical variogram instead). In general, when undertaking pilot-point-based 

parameterisation under the control of PEST, these limits should be set outside the 

PEST-imposed upper and lower parameter bounds. If the interpolation limits are 

narrower than the parameter bounds limits, the parameter estimation process will be 

compromised as node values interpolated from PEST-adjusted pilot point values are 

altered in order to respect the interpolation limits. In extreme cases, one or more pilot 



FAC2FEM  50 

 

  

point values can become insensitive, and hence unestimable, if node values around 

them are determined by the interpolation limits rather than by the values assigned to 

the pilot points. If in doubt set these limits wide and let PESTôs parameter bounds 

functionality ensure that reasonable values are assigned to mesh nodes. 

Next FAC2FEM prompts:- 

Enter name of existing mesh property file:  

Before using FAC2FEM you should make a copy of the MicroFEM input file which 

contains the parameters which you wish PEST to calculate. In assigning interpolated 

values to mesh nodes, MicroFEM will make a copy of this file, replacing existing 

property values listed in this file with those interpolated from the set of pilot point 

values contained in the pilot points file. The property file can be of the ñfemò or ñstoò 

type. 

MicroFEM next prompts for the property type whose values it will replace with pilot-

point-interpolated values. For the sake of generality, this property type is denoted by 

its number:- 

Enter property number for replacement:  

This number refers to the position that the property occupies on each pertinent line of 

the ñfemò or ñstoò file. In a ñfemò file properties are grouped by layer. The vertical 

resistance for layer 1 is listed first, followed by the transmissivity of layer 1; then 

follow the vertical resistance and transmissivity respectively for layer 2; and so on for 

each layer. In a ñstoò (or equivalent) file, only a single property type is represented, 

ordered by layer. Thus the storage coefficient of layer 1 is listed first, followed by the 

storage coefficient of layer 2, etc. 

Next FAC2FEM prompts:- 

Enter name for new mesh property file:  

This is the name of the file that FAC2FEM will write. This file will be identical to the 

existing property file except for the fact that the identified property type will be 

replaced by property values calculated through pilot point interpolation. It is very 

important that the extension of this file be in accordance with its type. If the file 

has an extension of ñfemò, FAC2FEM will assume that the ñexisting mesh property 

fileò whose name was provide above is also a ñfemò file, and will read and re-write it 

accordingly. For any other extension, the simple ñstoò type file structure is assumed. 

Finally FAC2FEM prompts:- 

Enter value for elements to which no interpolation takes place:  

No interpolation will take place to nodes within zones for which kriging factors were 

not computed by PPK2FACF, or to nodes that are further away from any pilot points 

than the PPK2FACF search radius. See the documentation of PPK2FACF for further 

details. 



FAC2FEM  51 

 

  

Once it has been supplied with all of the above information, FAC2FEM writes the 

new mesh property file and terminates execution. 

Note that if you wish to assign a single value to all nodes within a particular zone of 

the finite element mesh, simply assign a single pilot point to that zone. 

Uses of FAC2FEM 

FAC2FEM is used in the second stage of the spatial interpolation process from a set of 

pilot points to a MicroFEM finite-element mesh. The first stage of the interpolation 

process is undertaken using PPK2FACF which calculates kriging factors. When pilot 

points are assigned values by PEST (normally as part of a regularised calibration 

process), FAC2FEM is run prior to MicroFEM as part of a ñcomposite modelò 

encapsulated in a batch file. Responses to its prompts are placed in a ñresponse fileò to 

which FAC2FEM is directed through the ñ<ò character on its command line. 

Note that, in general, pilot-point-based calibration should not be undertaken without 

regularisation because of the large number of parameters that normally require 

estimation. As is explained elsewhere in this manual, the more pilot points that are 

used for spatial parameterisation, the less likely is the resulting parameter field to have 

a ñblotchyò appearance, or to possess unusually high or low values within small, local, 

areas of the model domain. 

See Also 

See also PPK2FACF and PPKREG. 



FAC2G  52 

 

 

FAC2G 

Function of FAC2G 

FAC2G carries out spatial interpolation based on kriging factors computed by the 

PPK2FACG utility. ñGò stands for ñgeneralò, as no particular model is assumed. As 

explained in documentation of the PPK2FACG utility, the format for the file which 

lists the points to which interpolation must take place (these normally being the nodes 

of a numerical grid or mesh) is comprised simply of three columns of data. The format 

of the file written by FAC2G is even simpler than this, being comprised of a single 

column of numbers, these being the outcomes of interpolation to the specified points. 

Points are arranged in the same order as that provided to PPK2FACG when it 

calculated kriging factors. 

Using FAC2G 

FAC2G prompts, and typical responses to these prompts, are as follows. 

 Enter name of interpolation factor file: factors. dat  

 Is this a formatted or unformatted file? [f/u]: f  

 

 Enter name of pilot points file [vk5.pts]: vk5.pts  

  -  data for 193 pilot points read from pilot points file vk5.pts  

 

 Enter lower interpolation limit: - 1e20  

 Enter upper interpolation limit: 1e20  

 

 Enter name for output file: temp1.dat  

 Enter value for elements to which no interpolation takes place: 1e35  

Reasons why interpolation to a specific point may not take place include the 

following. 

¶ The point lies outside the interpolation radius of all pilot points. 

¶ The point does not lie within a zone to which any pilot points belong. 

¶ The user specified when running PPK2FACG that no interpolation takes place 

to points within the zone to which that point belongs. 

See Also 

See also PPK2FACG and PPKREG. 



FAC2MF2K  53 

 

 

FAC2MF2K 

Function of FAC2MF2K 

FAC2MF2K modifies an existing MODFLOW-2000 input dataset, replacing selected 

parameters within that dataset with parameters based on pilot points. Thus if a 

modellerôs GUI does not support the use of pilot points in the parameterisation 

process, use of FAC2MF2K allows a modeller to use them anyway. ñKriging factorsò, 

by which hydraulic properties are calculated at MODFLOW cell centres from 

properties assigned to pilot points, are built into MODFLOW-2000 multiplier arrays; 

normally these kriging factors will have been computed by program PPK2FAC. The 

zonation integer array pertaining to the pilot points is added to the MODFLOW-2000 

zone file. Optionally, unwanted multiplier and zone arrays can be removed from the 

existing MODFLOW-2000 input dataset. 

Pilot points can be an extremely powerful device for accommodating spatial 

heterogeneity within a model domain. However the method works best when there is a 

superfluity of such points, and where model calibration is undertaken using nonlinear 

parameter estimation software. If enough pilot points are employed, the parameter 

estimator will be able to find locations within the model domain where hydraulic 

property variations need to be introduced in order to allow model outputs to match 

field data well. This process is best undertaken using PEST in preference to the 

nonlinear parameter estimation functionality of MODFLOW-2000, because PEST 

includes an extremely powerful mode of operation known as ñregularisation modeò. 

When operating in this mode, numerical problems caused by over-parameterisation 

are removed through the introduction of ñregularisation constraintsò. Using the 

PPKREG utility such constraints can be introduced on the basis of a geostatistical 

characterisation of the study area. The effect of this type of regularisation is to limit 

the degree of spatial heterogeneity introduced to the model domain to that which is 

just sufficient to obtain a user-specified level of fit between model outputs and field 

data. 

Once a pilot-point-based MODFLOW-2000 input dataset has been built with the help 

of FAC2MF2K, it is easily translated to a PEST input dataset using the 

MODFLOW2000-to-PEST translator, MF2PEST. Once in this format, it is a simple 

matter to modify the PEST control file to accommodate regularisation information 

using the PPKREG utility.  

Where MODFLOW parameter estimation is carried out using PEST, it is necessary 

that a specially modified version of MODFLOW-2000 known as MF2KASP be used 

to conduct forward model runs. This version of MODFLOW-2000 retains all existing 

MODFLOW-2000 functionality. However additional functionality has been added that 

optimises its use in the pilot points context. In particular, interpolation from pilot 

point locations to the finite-difference grid can be undertaken on the basis of logs of 

parameter values rather than parameter values themselves. This interpolation strategy 

is required where a parameterôs distribution is characterised by a log variogram rather 

than a variogram based on native parameter values; a log variogram is required to 



FAC2MF2K  54 

 

 

characterise the transmissivity and/or hydraulic conductivity distribution prevailing in 

most study areas. See Section 5 of Part A of this manual for further details. 

Using FAC2MF2K 

General 

Before using FAC2MF2K you should have built a MODFLOW model using your 

favourite Graphical User Interface. In those layers or stress periods, and for those 

property types, for which you intend to base parameterisation on pilot points, a 

simplistic parameterisation scheme should be adopted - probably based on one or two 

parameter zones. The parameters associated with these zones should be restricted only 

to those layers or stress periods for which pilot points will be introduced; they should 

appear in no other layers or stress periods. FAC2MF2K will replace parameters based 

on these zones with a parameterisation scheme based on pilot points. Thus these 

initial, zone-based, parameters will be completely removed from the MODFLOW-

2000 input dataset, and a suite of new parameters introduced in their place. If you 

know the names of the multiplier and zone arrays pertaining to these parameters (these 

are resident in the MODFLOW-2000 multiplier and zone input files), and if these 

arrays pertain to no other parameter types, then these too can be removed from the 

MODFLOW-2000 input dataset. This introduces savings in MODFLOWôs memory 

requirements. (Note that MODFLOWôs memory requirements are normally far greater 

when using pilot-point-based parameterisation than when using zone-based 

parameters.) 

As presently coded, FAC2MF2K can introduce pilot-point-based parameterisation 

only into the MODFLOW-2000 lpf and rch processes. In spite of this restriction, this 

should cover most practical requirements for the use of this parameterisation scheme. 

If you wish to use pilot points to characterise array-based parameters such as 

evapotranspiration, or if you wish to use pilot points in conjunction with the 

MODFLOW-2000 huf process, this can easily be accommodated. Simply use the 

FAC2REAL utility documented herein as part of a ñcomposite modelò (run before 

MODFLOW by PEST during the parameter estimation process) to build a 

MODFLOW-compatible array based on pilot points; then direct MODFLOW to read 

this array using its OPEN/CLOSE functionality for reading external array files, or use 

the REPARRAY utility to ñinjectò the array into the MODFLOW-2000 input dataset. 

Before FAC2MF2K is run, PPK2FAC must have been run. The purpose of PPK2FAC 

is to build a ñkriging factor fileò on the basis of a pilot points file. The kriging factor 

files contains the (cell-specific) factors by which pilot point values are multiplied in 

order to conduct spatial interpolation from those points to the finite-difference grid. 

As these factors are independent of the hydraulic property values associated with the 

pilot points, they can be assigned to the pertinent elements of MODFLOW-2000 

multiplier arrays. MODFLOW-2000 parameters to which the multipliers within these 

arrays are applied are the hydraulic property values pertaining to the pilot points. 

When running PPK2FAC, different pilot points can be assigned to different zones 

within the model domain. Zonation is defined by an integer array. Factors contained 



FAC2MF2K  55 

 

 

within the kriging factor file are dependent to some extent on the disposition of zones 

to which the different pilot points have been assigned. Like the factors themselves, the 

zonation array upon which calculation of the kriging factors is based must also be 

incorporated into the MODFLOW-2000 dataset. This array is added to the 

MODFLOW-2000 zone file. 

When introducing the new pilot-point-based parameters into the MODFLOW-2000 

input dataset, these parameters can be given the same names as the pilot points 

themselves. Alternatively a new name can be provided for each parameter comprised 

of a user-specified prefix (of up to two characters in length) followed by the name of 

the respective pilot point. The latter naming mechanism must be used where more 

than one set of parameters is introduced into the MODFLOW-2000 dataset based on 

the same set of pilot points. For example, one such set may represent hydraulic 

conductivity in a particular model layer, while another set may represent hydraulic 

conductivity pertaining to another model layer; or one set of pilot points may represent 

the hydraulic conductivity assigned to many model layers comprising the same 

hydrogeological unit, while the other set may represent the vertical anisotropy of that 

unit. Still another set may represent the unitôs specific yield.  

Parameter Replacement File 

FAC2MF2K is provided with the details of the parameter replacement process which 

it must undertake through a ñparameter replacement fileò. An example of such a file is 

shown below. Note that all entries in a parameter replacement file are case-insensitive; 

however keywords in the example shown below are capitalised to better exemplify the 

structure of this file. Note also that a blank line can occur anywhere within a 

parameter replacement file; also, a line beginning with the ñ#ò character is ignored. 

 



FAC2MF2K  56 

 

 

A Parameter Replacement File 

A parameter replacement file must include at least one ñreplacement segmentò; two 

are shown in the example above. A replacement segment begins with the string 

ñREPLACE partypeò where partype is a parameter type that can occur in the 

MODFLOW-2000 lpf or rch process. Legal parameter types are ñhkò, ñhaniò, ñvkò, 

ñvaniò, ñssò, ñsyò, ñvkcbò and ñrchò. A parameter segment must end with the words 

ñEND REPLACEò. 

A replacement segment is comprised of a set of lines, each of which must contain a 

keyword followed by the value assigned to the variable associated with the keyword. 

For all but one keyword, each line within a replacement segment must have two 

entries, ie. the keyword followed by the value pertaining to the keyword. However the 

line containing the NEWPARAMLAYS keyword (or NEWPARAMPERS keword for 

parameters of type ñrchò) must have 3 items (including the keyword itself). Some 

keywords are mandatory and must be cited within each replacement segment; however 

some are optional. Some keywords can be repeated many times; for others, only one 

incidence of the keyword can occur. Keywords can be supplied in any order. 

REPLACE  hk  

  OUT hk_1  

  OUT hk_2  

  OUT hk_3  

  OUT hk_5  

  OUT hk_6  

  NEWPARAMLAYS 1 2 

  TRANSFORMTYPE log 

  MINPARVAL 1e- 2 

  MAXPARVAL 1e3 

  MININTERPVAL 1e - 2 

  MAXINTERPVAL 1e3 

END REPLACE 

 

REPLACE  hk  

  OUT hk_8  

  NEWPARAMLAYS 3 3 

  NEWPARAMPREFIX ñk_ò 

  TRANSFORMTYPE log 

  MINPARVAL 1e- 2 

  MAXPARVAL 1e3 

  MININTERPFILE lowlim.ref  

  MAXINTERPFILE highlim.ref  

END REPLACE 

 

 

REMOVEZONE  zhk1 

REMOVEZONE  zhk2 

REMOVEMULT  hk1 

REMOVEMULT  hk2 



FAC2MF2K  57 

 

 

The OUT keyword is used to identify parameters to be removed from the existing 

MODFLOW-2000 dataset; it can be used many times within the one replacement 

segment. Each parameter identified in this way is removed from both the lpf or rch 

input file, and from the MODFLOW-2000 sensitivity input file (if this file is present). 

It is very important to ensure when designing the model that this parameter is assigned 

only to those layers or stress periods to which pilot-point-based parameters will be 

assigned. If this is not the case, the removal of that parameter from layers or stress 

periods in which it is not replaced by pilot-point-based parameters will leave a gap in 

the parameterisation of the model. (FAC2MF2K will detect this condition if it occurs 

and issue an appropriate error message.) It is also important to ensure that a parameter 

supplied after the OUT keyword is of the type indicated in the header to the 

replacement segment. Once again, if this is not done FAC2MF2K will cease execution 

with an appropriate error message. 

In the example shown above, the first replacement segment instructs FAC2MF2K to 

remove parameters hk1, hk2, hk3, hk5 and hk6 from the MODFLOW-2000 input 

dataset; all of these parameters are of type hk. The second replacement segment 

instructs FAC2MF2K to remove parameter hk8. Because of the NEWPARAMLAYS 

setting (see below) for each of these replacement segments,  parameters hk1, hk2, hk3, 

hk5 and hk6 must be restricted to layers 1 and 2 of the model, whereas parameter hk8 

must be restricted to layer 3. 

The NEWPARAMLAYS keyword can only be used in replacement blocks which 

pertain to lpf parameters. This keyword informs FAC2MF2K of the model layers to 

which pilot-point based parameters are to be introduced. A NEWPARAMLAYS 

keyword must be followed by two integers, the first specifying the upper layer and the 

second specifying the lower layer in a sequence of layers to which the pilot-point-

based parameters are to be added; these integers can be the same if there is only one 

layer in the sequence. Note also that if the layers into which the pilot-point-based 

parameters are to be introduced are non-contiguous, then you can use more than one 

NEWPARAMLAYS keyword to specify different layer sequences. 

For rch package parameters (of which ñrchò is the only parameter type), the 

NEWPARAMPERS keyword must be used in place of the NEWPARAMLAYS 

keword. Its operation is identical to that described above for the NEWPARAMLAYS 

keyword, except that it pertains to stress periods rather than model layers. 

The number of pilot-point-based parameters introduced into the MODFLOW-2000 

dataset through each replacement block is equal to the number of pilot points 

occurring in the pilot points file whose name is supplied to program FAC2MF2K in 

response to an appropriate prompt (see below). The name assigned to each introduced 

parameter is that of the pilot point which it represents unless a NEWPARAMPREFIX 

keyword is present in a replacement segment. If present, this must be followed by a 

character string of two characters or less in length (including the null string ñò), which 

will be appended to the front of the name of each pilot point to form the name of the 

related parameter. (Note that quotes are optional unless the null string is supplied.) 

Where there is more than one replacement segment in a parameter replacement file, 

each must cite a different parameter prefix. If this is not done then, because each 



FAC2MF2K  58 

 

 

segment will then refer to the same set of pilot points, there will be a duplication of 

parameter names. 

When using MODFLOW-2000, a parameter can be log-transformed in the parameter 

and sensitivity processes. If a PEST input dataset is then built from a MODFLOW 

input dataset using the MODFLOW2000-to-PEST translator MF2PEST, the 

transformation status of each parameter is carried through to the PEST inversion 

process. The parameter transformation status of pilot-point-based parameters 

introduced to the MODFLOW-2000 dataset through the parameter replacement file is 

set by the TRANSFORMTYPE keyword; appropriate entries following this keyword 

are ñlogò or ñnoneò. (For the types of parameters that are associated with the 

MODFLOW lpf process, especially hydraulic conductivity, TRANSFORMTYPE is 

best set to ñlogò; rch parameters are often more easily estimated if they are 

untransformed.) 

It is very important to note that if interpolation for a set of pilot points is based on a 

log-variogram, then parameters based on those pilot points must be log-transformed 

in the parameter estimation process. If FAC2MF2K detects that this rule has been 

violated it will cease execution with an appropriate error message. 

As is discussed in Section 5 of Part A of this manual, the PEST-compatible version of 

MODFLOW-2000 named MF2KASP provides special functionality for computing 

internal MODFLOW hydraulic property arrays from parameter values that makes this 

version of MODFLOW-2000 much more appropriate for the use of pilot-point-based 

parameterisation than the native MODFLOW-2000. In particular, summation and 

multiplication of parameter values to form arrays can take place on the basis of 

parameter value logarithms rather than on the basis of native parameter values (which 

is equivalent to kriging on the basis of a log variogram), and an upper and lower limit 

can be placed on array values calculated in this way. The latter functionality 

circumvents the occurrence of the wild and erratic interpolated values that can 

sometimes appear when using certain types of variogram. As will be discussed below, 

the variables which govern this aspect of MF2KASPôs functionality must be supplied 

in a special ñasp input fileò, a file which FAC2MF2K writes itself in the course of 

preparing the new MODFLOW-2000 input dataset. However, before doing this, it 

must know the upper and lower array bounds to use for introduced pilot-point-based 

parameters (it knows whether to undertake native or logarithmic interpolation based 

on the contents of the kriging factor file which it reads - see below). 

Identical options are available for imposition of array bounds when using FAC2MF2K 

to those available through the use of FAC2REAL; ie. upper and lower bounds can be 

applied uniformly or on a cell-by-cell basis. If an upper bound is to apply uniformly 

over the whole layer to which a pilot-point-based parameterisation scheme is to be 

introduced (applicable only to that parameter type of course), then it can be supplied 

following the keyword MININTERPVAL. However if you wish to apply an 

interpolation lower limit on a cell-by-cell basis, then a MODFLOW-compatible array 

of minimum values can be read from a file named after the MININTERPFILE 

keyword. Note that this file must be a formatted file. Depending on the setting of the 

colrow  variable in the settings file settings.fig  (which must be present in the 



FAC2MF2K  59 

 

 

directory from which FAC2MF2K is run) the array contained in this file may, or may 

not, be preceded by a ñnumber of columns, number of rowsò header. 

Similar considerations apply to the setting of maximum interpolated array values. The 

pertinent variables are MAXINTERPVAL and MAXINTERPFILE. Note that because 

of their mutually exclusive roles, a MININTERPVAL and MININTERPFILE keyword 

cannot both occur within the same replacement segment; similarly, 

MAXINTERPVAL and MAXINTERPFILE are mutually exclusive. 

The MINPARVAL and MAXPARVAL keywords have different roles from the 

MININTERPVAL and MAXINTERPVAL keywords. The latter relate to array values 

after interpolation from the set of pilot points to the MODFLOW grid has been carried 

out (individual array values can be larger or smaller than any of the pilot-point values 

on which they are based). However MINPARVAL and MAXPARVAL apply to the 

parameters themselves. When FAC2MF2K writes a new MODFLOW-2000 sensitivity 

file containing the new parameters, it transfers the values supplied for MINPARVAL 

and MAXPARVAL to the BL and BU variables respectively occurring in this file. If 

parameter estimation is undertaking using the MODFLOW-2000 inversion engine, 

these limits are used for reference purposes only. However if the MODFLOW-2000 

dataset written by FAC2MF2K is translated to PEST format by the MODFLOW2000-

to-PEST translator MF2PEST, then upper and lower parameter bounds supplied as 

MINPARVAL and MAXPARVAL are rigidly enforced. 

Two additional keywords can (optionally) be supplied within a parameter replacement 

file; however they must not be used within a replacement segment. These are 

REMOVEZONE and REMOVEMULT. If, after removal of certain parameters as 

specified in one or a number of OUT keywords in one or a number of replacement 

segments, certain zone and multiplier arrays from the MODFLOW-2000 multiplier 

and zone input files are no longer needed, then these arrays can be removed from 

those files, thus reducing MODFLOW storage requirements when it is run to 

undertake a simulation or calibration task. Arrays within each of these files are 

specified by name; to remove an array, supply its name after the REMOVEZONE or 

REMOVEMULT keyword. Note that if a multiplier array in a multiplier file is 

specified by a FUNCTION, and if any of the arrays referred to in the FUNCTION 

have been removed, then MODFLOW-2000 will cease execution with an appropriate 

error message. In that case it may also be necessary to remove the multiplier array 

based on the FUNCTION. This is done, once again, by supplying the name of the 

array after a REMOVMULT keyword. 

Running FAC2MF2K 

As mentioned above, a settings file settings.fig  must be present in the directory 

from which FAC2MF2K is run. Among other things, this file specifies the protocol to 

follow when reading and writing MODFLOW-compatible arrays from and to 

formatted files; in particular it specifies whether a ñnumber of columns, number of 

rowsò header is required in such a file. 

Upon commencement of execution FAC2MF2K prompts:- 



FAC2MF2K  60 

 

 

 Enter name of MODFLOW 2000 name file: -  

Like MODFLOW itself, FAC2MF2K reads the names of all MODFLOW input files 

from this file. In particular, FAC2MF2K needs to know the names of the sensitivity, 

parameter estimation, multiplier, zone, lpf and/or rch files pertinent to the current 

MODFLOW run. Also, if an asp input file is cited in the name file (see below), it 

needs to know the name of this as well. Note that it is not essential that a sensitivity 

and parameter estimation file be amongst those comprising the input dataset for the 

current model. However if they are present, FAC2MF2K will read them (and modify 

the sensitivity file). 

Next FAC2MF2K prompts:- 

 Enter name of PPK2FAC - generated interpolation factor file:  

 Is  this a formatted or unformatted file? [f/u]:  

This is the kriging factor file discussed above. As is indicated in the above prompt, it 

will have been prepared by running the PPK2FAC utility. Next FAC2FM2K asks:- 

 Enter name of pilot points file [ points_fi le ]:  

The default filename supplied with this prompt was read from the kriging factor file; 

this is the same pilot points file that was read by program PPK2FAC when it was run 

in order to calculate the kriging factors supplied in the file. You can use this same 

pilot points file when running FAC2MF2K (simply press the <Enter> key), or you can 

ask FAC2MF2K to read another pilot points file. If another file is read, the points 

cited in that file should be listed in the same order as in the pilot points file originally 

read by PPK2FAC. If not, FAC2MF2K will generate an appropriate error message. 

The specifications of a pilot points file are set out in Section 2 of part A of this 

manual. FAC2FM2K obtains parameter values from the 5
th
 column of this file. These 

are the values that FAC2MF2K assigns to these parameters in the MODFLOW-2000 

lpf, rch and sensitivity input files which it writes. If the parameter estimation process 

is active (or if the MODFLOW-2000 input dataset is converted to PEST format), then 

the hydraulic property values supplied in the pilot points file will be the initial values 

for use in the inversion process. (As stated above, upper and lower bounds used in the 

parameter estimation process are the same for all parameters of a particular type, 

these being provided by the variables MAXPARVAL and MINPARVAL in the 

parameter replacement file. You should ensure that the initial parameter values 

provided in the pilot points file are within these limits.) 

FAC2MF2K next asks:- 

 Enter name of integer array zonation file [ integer_file ]:  

The default name supplied with the above prompt is the name of the zonation file read 

by PPK2FAC when it calculated kriging factors. Simply press the <Enter> key to 

accept the default (this being the appropriate course of action on most cases). 

Next FAC2MF2K prompts for the name of the parameter replacement file. The 

specifications of this file are described in the preceding section. The prompt is:- 



FAC2MF2K  61 

 

 

 Enter name of parameter replacement file: -  

FAC2MF2Kôs next prompt is:- 

 Enter name base for new multiplier and zonation arrays [3 chars or less]:  

As has already been described, FAC2MF2K adds new multiplier arrays comprised of 

kriging factors to the MODFLOW-2000 multiplier file. It also adds the integer 

zonation array to the MODFLOW-2000 zone file. All new arrays added to the 

MODFLOW-2000 input dataset must have a name. The name given to the integer 

zonation array is the same as the 3-character string that you must supply in response to 

the above prompt. The names of the multiplier arrays are formed by adding a number 

to this 3-character string (if there is only one zone in the model domain, there can be 

as many of these arrays as there are pilot points). If there is any conflict between 

names formed in this fashion and existing multiplier and zone array names, 

FAC2MF2K will issue an appropriate error message informing you of this. 

FAC2MF2K then prompts:- 

 Enter name for ASP input file: -  

As is explained in Section 5 of Part A of this manual, the asp input file is read by the 

modified MODFLOW-2000 named MF2KASP. Note however that if MF2KASP is 

not supplied with an asp input file, or if the variables supplied in this file take on 

certain values, then operation of MF2KASP is identical to that of the normal 

MODFLOW-2000. MF2KASP is directed to its asp input file by an appropriate entry 

in the MODFLOW name file. 

If an asp entry is already present in the name file read by FAC2MF2K, you must 

supply the name of this same name file to FAC2MF2K in response to the above 

prompt (FAC2MF2K will inform you if you donôt). In this case FAC2MF2K gives 

you the option of overwriting the existing asp input file or of appending information 

to that file. In most cases the ñoverwriteò option should be selected; however see the 

section below entitled ñRunning FAC2MF2K Twiceò for an exception to this 

recommendation. If the ñoverwriteò option is selected, FAC2MF2K supplies values 

for variables occurring in the first part of the asp input file which result in no 

modification to standard MODFLOW-2000 behaviour as far as PEST-interface, text 

output, and drying/re-wetting functionality is concerned ie. IPESTINT, LIMOP, 

HDRYBOT, NOSTOP and MINTHICK are all set to zero; these will be modified later 

to values more appropriate for use with PEST if you run the MODFLOW2000-to-

PEST translator MF2PEST. However the INTERP variable occurring on the first data 

line of the asp input file will be set to 1, signifying that the asp input file contains 

information which modifies the operation of MODFLOW-2000 in building internal 

property arrays from parameter values; this information is written to the second part of 

the asp input file.  

Modifications to MODFLOWôs array-generation behaviour requested by the new asp 

input file are such that the instructions specified in the parameter replacement file and 

in the kriging factor file are obeyed. Thus if spatial parameter interpolation takes place 

on the basis of a log variogram, then log-based array generation is specified in the asp 



FAC2MF2K  62 

 

 

input file for the pilot-point-based parameters added to the MODFLOW dataset by 

FAC2MF2K. Also, interpolation upper and lower bounds as set by the 

MININTERPVAL, MININTERPFILE, MAXINTERPVAL and MAXINTERPFILE 

variables supplied in the parameter replacement file are transferred to the asp input 

file. 

When you have answered all of FAC2MF2Kôs prompts, it carries out its alterations to 

existing MODFLOW-2000 input files. FAC2MF2K undertakes the following tasks. 

¶ Parameters identified for removal through the OUT keyword are removed 

from the lpf, rch and sensitivity process input files. 

¶ Real and integer arrays identified for removal through the 

REMOVEMULT and REMOVEZONE keywords are removed from the 

MODFLOW-2000 multiplier and zone files. 

¶ New pilot-point-based parameters are added to the lpf, rch and sensitivity 

files. 

¶ New multiplier arrays containing kriging factors are added to the multiplier 

file. 

¶ A new integer array containing pilot-point zonation is added to the zone 

file. 

¶ If present, the parameter estimation input file is checked in order to ensure 

that no prior information is cited in that file pertaining to parameters which 

have been removed. 

¶ An asp input file is written or modified. 

¶ An asp entry citing the name of the asp input file is added to the existing 

MODFLOW name file. 

However before any alterations are made to existing MODFLOW-2000 input files, 

FAC2MF2K copies all of these files to filenames of the same name, but with the 

extension ñ.oldò attached. If, during any stage of FAC2MF2K execution, FAC2MF2K 

encounters an error condition then, before ceasing execution with an appropriate error 

message, it copies these stored files back to the original files so that the existing 

MODFLOW-2000 input dataset is unchanged. However if execution proceeds to 

completion without any problems, the names of all altered files, and the names of the 

files in which the original, unaltered dataset is stored, are written to the screen just 

before FAC2MF2K ceases execution. 

Running MODFLOW-2000 

The USGS version of MODFLOW will reject a name file which references an asp 

input file. So if a MODFLOW-2000 input dataset prepared by FAC2MF2K is to be 



FAC2MF2K  63 

 

 

used by the USGS version of MODFLOW, this entry must be removed from the 

namefile produced by FAC2MF2K. However you should carefully note the following. 

¶ MODFLOW-2000 will not impose upper and lower limits in the array 

interpolation process; thus MININTERPVAL, MININTERPFILE, 

MAXINTERPVAL and MAXINTERPFILE settings in the parameter 

replacement file cannot be enforced if MODFLOW-2000 is used to carry 

out a simulation which includes pilot-point-based parameters. 

¶ MODFLOW-2000 cannot carry out kriging based on a log variogram. If, 

when you ran PPK2FAC to generate kriging factors, you supplied a 

structure file containing a geostatistical structure in which the 

TRANSFORM value was ñlogò, then kriging factors supplied in the 

kriging factor file apply to the logs of parameter values rather than to the 

parameter values themselves. These factors are transferred to MODFLOW-

2000 as multiplier arrays. If the native MODFLOW-2000 is used, these 

factors will wrongly be applied to native parameter values instead of to log 

parameter values. Hence MF2KASP must be used if the factors contained 

in the multiplier arrays are to be properly applied. MF2KASP obtains 

information pertaining to the correct use of these factors from its asp input 

file - see Section 5 of Part A of this manual for further details. 

¶ If array calculation is based on the logs of parameter values rather than on 

native parameter values, then sensitivities calculated by the MODFLOW-

2000 sensitivity process will be in error. Thus although MF2KASP will 

happily calculated heads and all other MODFLOW output quantities, based 

on log-interpolation of parameter values, it cannot calculate sensitivities, 

and it cannot undertake parameter estimation. 

In spite of the disadvantages that occur when interpolation is based on the logs of 

parameter values, the log-variogram option should still be selected when using pilot 

points to characterise a transmissivity or hydraulic conductivity distribution; many 

cases are documented in the literature where these hydraulic properties are best 

characterised by a log variogram.  

The fact that MF2KASP cannot be used to undertake MODFLOW-2000 nonlinear 

parameter estimation for pilot-point-based parameters based on a log-variogram is 

really no disadvantage, for PEST can readily be used to undertake the parameter 

estimation process. A set of PEST input files can easily be prepared using the 

MODFLOW2000-to-PEST translator MF2PEST based on the MODFLOW-2000 

input dataset written by FAC2MF2K. However if logarithmic interpolation is used, be 

sure to set the MF2PEST input variable IMDERCALC to 0 when running MF2PEST; 

this will instruct PEST to calculate MODFLOW derivatives using finite differences, 

rather than looking to MF2KASP to supply it with these derivatives. As was stated 

above, when log-based interpolation is undertaken, sensitivities (ie. derivatives) 

calculated by the MODFLOW-2000 sensitivity process are invalid. Hence there is no 

choice but to allow PEST to calculate these derivatives itself using finite parameter 



FAC2MF2K  64 

 

 

differences. (Don't forget to also set the HCLOSE solution convergence criterion to an 

appropriately low value as well; 10
-4

 is often quite appropriate.) 

Perhaps the main advantage in using PEST to calibrate a model which is 

parameterised on the basis of pilot points is that PEST can be run in regularisation 

mode in order to apply geostatistically-based constraints on the allowed degree of 

spatial parameter variation. PESTôs sophisticated regularisation functionality allows 

the user to set the degree to which PEST is prepared to sacrifice an optimal fit 

between model outputs and field data in order to accommodate these parameter 

variational constraints.. The use of pilot points, in conjunction with regularisation 

functionality, mostly allows better model-to-measurement fits to be obtained than can 

be obtained with discrete parameter zones, because a superfluity of such points can be 

used in order to allow PEST to introduce heterogeneity into the system where it is 

needed to obtain such a fit. The simultaneous imposition of regularisation constraints 

ensures that the calibrated property field is geologically reasonable. Furthermore, 

because of its beneficial effects in mitigating the deleterious effects of parameter 

insensitivity and correlation, the inversion process is numerically much more stable. 

Regularisation data can be added to a PEST control file written by MF2PEST using 

the PPKREG utility documented herein. 

Running FAC2MF2K Twice 

Sometimes it may be necessary to run FAC2MF2K more than once to complete the 

process of introducing pilot-point based parameters into a MODFLOW-2000 dataset. 

This will be necessary if parameters of different types are based on different sets of 

pilot points, or if interpolation takes place on the basis of a different variogram from 

the same set of pilot points for different parameter types. There is no problem in 

running FAC2MF2K more than once for this purpose. However be sure to provide 

FAC2MF2K with the name of the same asp input file on each occasion that you run it 

and, on each such occasion but the first, make sure to append data to this file rather 

than overwrite it.  

Uses of FAC2MF2K 

The usefulness of FAC2MF2K springs from the usefulness of characterising spatial 

variability of a hydraulic property through the use of pilot points supplemented by 

kriging as an interpolation mechanism. For a full discussion of this process, see 

Section 5 of Part A of this manual. As is explained in that section, two options are 

available to a modeller when implementing pilot-point-based parameterisation in the 

MODFLOW context. The first is to use FAC2REAL to build a MODFLOW-

compatible real array on the basis of pilot points; MODFLOW must then be instructed 

to read the file containing this array as it commences execution. Parameters are 

defined as the values assigned to pilot points using a template file based on a pilot 

points file. The second mechanism is to use FAC2MF2K to modify an existing 

MODFLOW-2000 input dataset. That dataset can then be converted to PEST format 

using the MODFLOW2000-to-PEST translator, MF2PEST. In either case, 

geostatistically-based regularisation constraints can be introduced to the inversion 

process using the PPKREG utility. 



FAC2MF2K  65 

 

 

See Also 

See also FAC2REAL,  PPK2FAC and PPKREG. 



FAC2REAL  66 

 

 

FAC2REAL  

Function of FAC2REAL  

FAC2REAL undertakes the second stage of spatial interpolation to a model grid of the 

values assigned to a set of pilot points situated within (or close to) the model domain. 

The first stage of this spatial interpolation process is carried out by program 

PPK2FAC. PPK2FAC generates a set of cell-specific ñkriging factorsò by which 

hydraulic properties (or their logarithms) assigned to pilot points are multiplied prior 

to summation to form the interpolated value at each model cell. FAC2REAL carries 

out the actual multiplication and summation, writing the outcomes of its calculations 

to a MODFLOW-compatible real array file. Upper and lower limits can be applied to 

interpolated values if desired. 

Using FAC2REAL 

Execution of FAC2REAL is initiated by typing its name at the screen prompt. 

However it will cease execution immediately (with an appropriate error message) if a 

settings file (settings.fig ) is not present within the directory from which it was 

run, and if this file does not possess a ñcolrow ò descriptor, informing it whether or 

not formatted MODFLOW-compatible real array files begin with a ñnumber of 

columns, number of rowsò header line. 

FAC2REALôs first prompts are:- 

 Enter name of interpolation factor file: -  

 Is this a formatted of unformatted file  [f/u]:  

The interpolation factor file will have been written by program PPK2FAC. It contains 

a set of kriging factors by which spatial interpolation is undertaken to cells within the 

finite difference grid. These kriging factors may be available for some, or all, of the 

cells of the model grid. Note that if an attempt is made to read an unformatted 

interpolation factor file as a formatted file (or vice versa), then FAC2REAL will cease 

execution with an error message. 

FAC2REAL next prompts:- 

 Enter name of p ilot points file [ points_file ]:  

A default filename is always supplied with this prompt. If the user responds to the 

prompt simply by pressing the <Enter> key, then the default filename is accepted. 

FAC2REAL obtains this filename from the interpolation factor file; when PPK2FAC 

writes this file, it records the name of the pilot points file from which it read pilot 

point coordinates and zone numbers. 

The pilot points file read by FAC2REAL need not be the same pilot points file as that 

read by PPK2FAC when it was used to calculate kriging factors. Nevertheless it must 

list the same points in the same order, and each point must be assigned to the same 



FAC2REAL  67 

 

 

zone. However the hydraulic property values assigned to the pilot points can be 

different from those provided in the pilot points file read by PPK2FAC. (Note that if 

the number and/or ordering of points in the pilot points file supplied to FAC2REAL is 

different from that used in the pilot-points file supplied to PPK2FAC, FAC2REAL 

will detect the difference and cease execution with an appropriate error message.) 

In carrying out spatial interpolation to the cell centres of a MODFLOW grid, 

FAC2REAL is able to impose an upper and lower limit on interpolated values. These 

limits can be globally applied, or they can be cell specific. FAC2REAL next prompts 

for information on these limits. First it asks:- 

 Supply lower interpolation limit as an array or single value? [a/s]:  

If you respond with an ñsò, FAC2REAL next prompts for the single lower 

interpolation limit applicable to the entire array. 

 Enter lower interpolation limit: -  

However if you respond to the above prompt with an ñaò, FAC2REAL prompts for the 

name of a file containing a MODFLOW-compatible real array. 

 Enter name of lower interpolation limit array file: -  

As usual, if the provided filename has an extension of ñREFò FAC2REAL assumes 

that the file is formatted. However if it possesses an extension of ñREUò, FAC2REAL 

assumes that the file is unformatted. If the extension is neither of these, FAC2REAL 

prompts for the formatted/unformatted status of the file. 

FAC2REAL then prompts for interpolation upper limits in a similar fashion. 

Finally FAC2REAL asks for the name of the file to which it should write interpolated 

cell values. These are written in the form of a MODFLOW-compatible real array. 

FAC2REAL also asks for a value to provide to any cells in this array to which no 

interpolation takes place; this will occur if no factors pertaining to these cells are 

provided in the factor file - either because affected cells lie within zones for which 

interpolation factors were not calculated, or because they are too far away from any 

pilot points for kriging factors to have been evaluated. (ñToo farò in this context is 

defined by the search radius supplied during execution of PPK2FAC.) An easily 

distinguished number such as 10
35

 often serves this purpose. 

Once FAC2REAL has written its MODFLOW-compatible real array, it informs the 

user of this and ceases execution. 

Uses of FAC2REAL 

FAC2REAL runs quite quickly, for the spatial interpolation that it undertakes amounts 

to nothing more than the calculation of a few sums and products (with logarithmic 

transformation if kriging factors are based on geostatistical structures which pertain to 

the logs of hydraulic property values, rather than to the property values themselves). 

The bulk of the work required to carry out spatial interpolation was actually 



FAC2REAL  68 

 

 

undertaken by PPK2FAC; calculation of kriging factors can be a very time-consuming 

task if the number of pilot points is large. 

Because FAC2REAL runs relatively quickly, there is little computational penalty 

involved in including it in a composite model, together with MODFLOW and/or 

MT3D, which is run by PEST as part of a parameter estimation process in which 

hydraulic property values are estimated at the locations of pilot points. Before running 

PEST, a template file must be created from a pilot points file. On every occasion that 

it runs the model during the parameter estimation process, PEST first writes a pilot 

points file based on the template file, using hydraulic property values that it wishes the 

model to use on that run. FAC2REAL then builds a MODFLOW-compatible real 

array using the values in the new pilot points file. This array can then be ñpastedò into 

a MODFLOW input file using program REPARRAY; or it can be accessed by 

MODFLOW using its ñOPEN/CLOSEò option for reading an external data file. After 

MODFLOW has run to completion, its outputs can be spatially and temporally 

interpolated to the sites and times of field measurements using utilities such as 

MOD2OBS and BUD2SMP (which should also be run by PEST as part of the 

ñcomposite modelò). Assistance in PEST input file preparation can be gained using 

program PESTPREP. 

One advantage of undertaking pilot-points-based parameter estimation using this 

method instead of using MODFLOW-2000 for parameter definition and estimation, is 

that FAC2REAL can carry out spatial interpolation based on log-variograms, whereas 

MODFLOW-2000 cannot. Also, FAC2REAL can impose upper and lower limits on 

interpolated arrays (which can be very important on some occasions, especially if 

using a Gaussian variogram) where, once again, MODFLOW-2000 cannot. Note, 

however, that a specially modified version of MODFLOW (MODFLOW-ASP) does 

include such log-transformation and value-limiting functionality; see Section 5 of Part 

A of this manual for further details. However even if this version of MODFLOW-

2000 is employed, the actual nonlinear parameter estimation process must still be 

undertaken by PEST for, under these circumstances, parameter sensitivities calculated 

by MODFLOW-2000 are invalid. 

See Also 

See FAC2MF2K, FIELDGEN, PPK2FAC and PPKREG. 

 



FAC2REAL3D  69 

 

 

FAC2REAL3D 

Function of FAC2REAL3D 

FAC2REAL3D undertakes three-dimensional kriging, interpolating parameter values 

listed in a three-dimensional pilot points file to cell-centres of a MODFLOW finite-

difference grid using kriging factors computed by the PPK2FAC3D utility. 

Using FAC2REAL3D 

Use of FAC2REAL3D is similar to that of FAC2REAL.  

Like other members of the Groundwater Data Utility suite, the user can backtrack to 

previous prompts by responding to any prompt with ñEò or ñeò followed by <Enter>. 

Upon commencement of execution FAC2REAL3D looks for a settings file named 

settings.fig in the directory from which its execution was initiated. It obtains a 

COLROW setting from this file. If settings.fig is not present, a COLROW setting of 

ñnoò is presumed. 

FAC2REAL3Dôs first prompts are: 

 Enter name of interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  

Respond as appropriate. Next FAC2REAL3D asks: 

 Enter name of 3D pilot points file  [ file.dat ] :  

where file.dat is the name of the three-dimensional kriging file provided to 

PPK2FAC3D on the basis of which it computed kriging factors. Press <Enter> to 

accept this filename, or supply the name of another pilot points file. However if the 

latter course is followed, the file must cite the same pilot points (including the same 

names) in the same order as that in the file provided provided to PPK2FAC3D when it 

computed the kriging factors, for fast spatial interpolation depends on this. If this is 

not the case PPK2FAC3D will terminate execution with an appropriate error message. 

FAC2REAL3D next asks for interpolation limits: 

 Enter lower interpolation limit:  

 Enter upper in terpolation limit:  

Provide appropriate numbers in response to these prompts. If an interpolated value at 

any cell within the three-dimensional model domain is less than or greater than 

(respectively) these limits, this value will be clipped in order to respect the limits. 

FAC2REAL3Dôs next prompt is: 

 Write outputs to single 3D table or multiple 2D real array files? [s/m]:  

If the userôs response is ñmò FAC2REAL3D then asks: 

 Enter filename base for output real array files:  



FAC2REAL3D  70 

 

 

Suppose that the response to this prompt is, for example, kx. Then FAC2REAL3D 

will write a series of files named kx1.ref, kx2.ref....kxN.ref where N is the number of 

layers in the model domain. Each of these files holds a two-dimensional real array; 

collectively they span the model grid. On the other hand, if the userôs response to the 

above prompt is ñsò, FAC2REAL3D asks: 

 Enter name for output file:  

On the first line of this output file FAC2REAL3D records three integers, these being 

the number of columns, rows and layers respectively comprising the MODFLOW 

grid. It then lists the value interpolated to every cell in the grid, with a single entry on 

each line. These entries are listed with column numbers cycling fastest, then row 

numbers and then layer numbers. 

Finally FAC2REAL3D prompts: 

 Enter value for elements to which no interpolation takes place:  

Cells which belong to zones for which no spatial interpolation has been requested, or 

are further removed from the nearest pilot point than the maximum search radius 

specified when PPK2FAC3D was run will not have interpolated values assigned to 

them. It is normally best to respond to the above prompt with a high value such as 

1.0e35 so that these cells are easily recognized. 

Uses of FAC2REAL3D 

FAC2REAL3D is employed in conjunction with PPK2FAC3D for undertaking three-

dimensional interpolation. 

See Also 

See also FAC2REAL and PPK2FAC3D.  

 



FAC2RSM  71 

 

 

FAC2RSM 

Function of FAC2RSM 

FAC2RSM builds an input data file for the RSM model (i.e. ñRegional Simulation 

Modelò) developed by the South Florida Water Management District by undertaking 

spatial interpolation from a set of pilot points to the model mesh. In this respect it is 

the RSM-equivalent of FAC2REAL (which undertakes the same task in the 

MODFLOW/MT3D context). Its use is predicated on the assumption that kriging 

factors have been previously computed by PPK2FACR. 

Using FAC2RSM 

Use of FAC2RSM is similar to that of FAC2REAL. Its use will therefore be described 

only briefly; the user is referred to FAC2REAL for further documentation. 

FAC2RSM commences execution with the prompts:- 

 Enter name of interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  

FAC2RSM obtains PPK2FACR-generated kriging factors from this file. Next it 

prompts:- 

 Enter name of pilot points file :  

Sometimes the above prompt will be accompanied by a default filename, this name 

having been obtained from the PPK2FACR-generated kriging factors file. If so, it can 

be accepted by simply pressing the <Enter> key. FAC2RSM obtains values which it 

must interpolate to the mesh from the pilot points file. 

FAC2RSM next prompts:- 

 Enter lower interpolation limit:  

 Enter upper interpolation limit:  

No interpolated value, in any part of the model mesh, will be allowed to undercut the 

value supplied in response to the first of the above prompts, or exceed the value 

supplied in response to the second of the above prompts. (Note that these limits are 

provided only as a check on the sometimes spurious values that can result from 

kriging ï  a phenomenon that is more likely to occur when kriging is based on some 

variograms  - e.g. the Gaussian variogram ï than others. These values should not be 

used to limit parameter ranges during the parameter estimation process. This should 

be done using upper and lower parameter bounds in the PEST control file.) 

FAC2RSM next asks for the name of the file that it should write. Its prompt is:- 

 Enter name for mesh property file:  

Then it asks:- 

 Enter NAME of data type:  



FAC2RSM  72 

 

 

This text string provided here will be inserted after the NAME keyword on the fifth 

line of the RSM input data file. If the name is comprised of two words, then these 

words should be encased in quotes. 

FAC2RSMôs final prompt is:- 

 Enter value for elements to which no interpolation takes place:  

These will be mesh elements which were assigned to a zone for which no kriging 

factors were computed when PPK2FACR was run prior to FAC2RSM. 

Once it has received all of the above information FAC2RSM writes the nominated 

RSM input file, computing mesh element values through interpolation from pilot 

point values. 

Uses of FAC2RSM 

FAC2RSM comprises part of the means through which pilot point parameterisation 

can be employed for RSM. These parameters can be estimated by PEST through 

regularised inversion. At least one instance of FAC2RSM will comprise part of the 

model run by PEST during the inversion process. 

See Also 

See also PPK2FACR, RSM2SRF and RDAT2TAB. 



FEM2SMP  73 

 

 

FEM2SMP 

Function of FEM2SMP 

FEM2SMP constitutes part of the PEST-MicroFEM interface. (Other programs in this 

interface are PPK2FACF and FAC2FEM.) FEM2SMP translates MicroFEM-

generated heads and flows, contained within ñfthò and ñftqò files, to bore sample file 

format; see part A of this manual for a description of this file format. Once model 

outputs are in this format, program SMP2SMP can be used to time-interpolate these 

outputs to the times at which measurements were made. (When calibrating a steady-

state model, there will only be one such time.) 

Using FEM2SMP 

General 

Like many other programs of the Groundwater Data Utilities, FEM2SMP requires that 

a ñsettings fileò (named settings.fig ) be present within the directory from which 

it is run. This file informs FEM2SMP whether the protocol for representation of dates 

is dd/mm/yyyy or mm/dd/yyyy; see part A of this manual for further details. Note also 

that you can ñbacktrackò in FEM2SMP execution by replying to any of its prompts 

with ñEò or ñeò (for ñescapeò) followed by <Enter>. If FEM2SMP is being run as part 

of a ñcomposite modelò (encapsulated in a batch file) by PEST, then responses to its 

prompts can be placed in a text file; FEM2SMP is then directed to look to this file for 

the responses to its prompts by using the ñ<ò character, followed by the name of the 

response file, as part of the FEM2SMP command issued from the batch file. 

FEM2SMP commences execution with the prompts:- 

Enter name of "fth" file (press <Enter> if none):  

Enter name of "ftq" file (press <Enter> if none):  

FEM2SMP will  read either of both of these MicroFEM output files, transferring all of 

the information contained within them to the bore sample file which it generates. Next 

FEM2SMP prompts for the date and time at which the simulation begins:- 

Enter simulation starting date [dd/mm/yyyy]:  

Enter simulation starting time [hh:mm:ss]:  

This information is required so that FEM2SMP can convert the elapsed simulation 

times recorded in the ñfthò and ñftqò files into dates and times required for the bore 

sample file which it generates. 

Finally FEM2SMP prompts for the name of the bore sample file which it must write:- 

Enter name for new bore sample file:  

Once it has been supplied with this information, FEM2SMP writes the bore sample 

file and terminates execution. 



FEM2SMP  74 

 

 

Bore Identifiers 

As is explained in Part A of this manual, the first column of a bore sample file is 

comprised of bore identifiers (or the identifiers of other entities pertaining to sites at 

which measurements were made). These must be 10 characters or less in length. In 

converting MicroFEM outputs to bore sample file format, FEM2SMP must generate 

these names itself. 

For a single layer model, it is an easy matter for FEM2SMP to generate bore (or site) 

identifiers. These are simply copied from the entity names provided in the ñfthò and 

ñftqò files from which data is extracted; for ñfthò files these entity names are 

equivalent to node labels. If any of these names are greater than 10 characters in 

length, FEM2SMP shortens them (from the left) to 10 characters. If the shortening of 

names in this manner results in nonuniqueness of bore identifiers (this contravening 

the rules governing construction of a bore sample file), FEM2SMP will warn the user 

of this before terminating execution. Note that MicroFEM node labels should never 

contain spaces. 

The naming of bore identifiers becomes a more complicated task for multi-layer 

models. For such models MicroFEM allows node information from one or many 

layers to be stored in ñfthò and ñftqò files. Where information from only one layer is 

recorded in these files (no matter how many layers are in the actual model), then the 

bore identifier naming convention employed by FEM2SMP is the same as has already 

been described. However where two or more layers are represented in these files, then 

unique identifier names are created through attaching a suffix to each MicroFEM 

entity name; this suffix is comprised of an underscore, followed by the name of the 

layer to which the information for that entity pertains. Thus, for example, the identifier 

ñw13_3ò refers to information from the node named ñw13ò recorded for layer 3. It 

should be noted that where suffixes are added to MicroFEM names to form bore 

identifiers in this manner, the chances of such an identifier exceeding the legal length 

of 10 characters is increased. As was mentioned above, shortening of names from the 

left is carried out in order that this protocol be respected; however incidences of name 

nonuniqueness are then more likely to arise. 

Matching of Names 

When MicroFEM is being calibrated by PEST, it is necessary to run SMP2SMP after 

FEM2SMP (which is run after MicroFEM) to undertake temporal interpolation of 

model outputs to the times at which measurements were made. SMP2SMP requires 

two bore sample files ï an ñobservation sample fileò and a ñmodel sample fileò. The 

latter is produced by FEM2SMP while the former is supplied by the user. SMP2SMP 

matches bores (or sites) within these two files by their names. If this linkage is to be 

carried out correctly, then it is very important that bore (or site) identifiers in the 

observation bore sample file use the same naming convention as those in the model 

bore sample file. Thus in multi-layered modelling contexts where MicroFEM adds a 

layer number suffix to a user-supplied node name, this same suffix must be added to 

the bore name supplied in the observation bore sample file used by SMP2SMP. 



FEM2SMP  75 

 

 

Uses of FEM2SMP 

Once model output data has been converted to bore sample file format by FEM2SMP, 

a number of postprocessing options for this data are available through various 

programs of the Groundwater Data Utilities. For example, SMP2HYD can be used to 

re-format this data for plotting using a graphing or spreadsheet package. However the 

most useful type of data processing in the calibration context is that provided by 

SMP2SMP which interpolates this data to the times at which measurements were 

made. Thus, after MicroFEM, FEM2SMP and SMP2SMP have been run, a model-

generated equivalent to the user-supplied observation bore sample files exists. 

Respective entries in these files can be directly compared as they pertain to the same 

measurement times; differences between these entries can be minimised through the 

calibration process. 

Spatial parameterisation of the MicroFEM model domain can be undertaken using 

pilot points. As many of these points as possible should be used, and the calibration 

process should be regularised. The ñmodel input fileò, as far as PEST is concerned, 

then becomes one or more ñpilot point filesò. A PEST template file must be created 

for each of these so that PEST can supply appropriate values for these points prior to 

each model run. 

A batch file comprised of commands to run FAC2FEM, followed by MicroFEM 

followed by FEM2SMP, followed by SMP2SMP should be written. This then 

becomes the ñmodelò to be run by PEST. Generation of a PEST instruction set to read 

the SMP2SMP output file, and of the PEST control file itself, can then be undertaken 

using PESTPREP. The PESTPREP-generated PEST control file may then require 

some slight user-modification; see the PESTPREP documentation in this manual for 

further details. It will also require the addition of regularisation prior information ï a 

task carried out by PPKREG. 

Note that if steady-state calibration is being undertaken, then only one item of 

information should be supplied for each bore or site in the observation bore sample 

file supplied to SMP2SMP. The ñextrapolation thresholdò supplied to SMP2SMP can 

then be supplied as an arbitrarily large number so that the single model output 

pertaining to each bore can be ñinterpolatedò to the ñmeasurement timeò, no matter 

what the time difference between the two. 

See Also 

See also FAC2FEM, PESTPREP, PPK2FACF, PPKREG, SMP2SMP.  



FIELDGEN  76 

 

 

FIELDGEN  

Function of FIELDGEN  

FIELDGEN is a two-dimensional stochastic field generator in which field generation 

is undertaken using the Gaussian sequential simulation principal. FIELDGEN is more 

flexible than many other field generators. In particular:- 

¶ FIELDGEN allows stochastic field generation to be zone-based; different 

fields can be generated in different zones within a model domain based on 

different geostatistical structures. The variograms comprising these 

geostatistical structures can be anisotropic if desired, with the axes of 

anisotropy oriented at arbitrary angles to the model grid. 

¶ Fields generated by FIELDGEN can be conditioned by point measurements if 

desired. 

¶ Fields can be generated for both uniform and nonuniform model grids. 

Use of FIELDGEN allows a modeller to undertake stochastic 

MODFLOW/MODPATH/MT3D simulation. It also allows a modeller to undertake 

ñcalibration-constrained Monte-Carlo analysisò by combining stochastic field 

generation with pilot-point-based field multiplication under the control of PEST 

operating in regularisation mode. 

Using FIELDGEN 

File Types Used by FIELDGEN 

FIELDGEN is a member of the pilot points family of programs. As such it requires 

file types which are typical of this suite, including a ñpilot points fileò and a ñstructure 

fileò. Both of these file types are discussed in Part A of this manual. When used with 

FIELDGEN the (optional) pilot points file contains conditioning data used in the 

stochastic field generation process. The structure file contains the variograms upon 

which stochastic field generation is based. 

FIELDGEN obtains information on model domain zonation through a MODFLOW-

compatible integer array. It writes the fields which it produces to a series of 

MODFLOW-compatible real array files. 

Sequential Gaussian Simulation 

The process of stochastic field generation by sequential simulation is very easy to 

understand. At each field point an expected field value and a field standard deviation 

pertaining to that point are first determined. These are calculated through kriging from 

points to which field values have already been assigned, as well as from points at 

which conditioning data exists (if available). Using the expected value and standard 



FIELDGEN  77 

 

 

deviation calculated in this way, a random field value is generated based on the 

assumption of a Gaussian probability distribution. The field value thus obtained can 

then be used in generating expected values and standard deviations at other field 

points at which field generation then takes place in the same way. 

FIELDGEN provides the user with two kriging options, viz. simple and ordinary 

kriging. Simple kriging is preferred as this is more in harmony with the theoretical 

basis of sequential simulation. A number of other options are available for 

implementation of the kriging step. These are more fully discussed below; some of 

them can exert a significant influence on the computing time required for field 

generation. 

The stochastic field generation engine of FIELDGEN is subroutine sgsim supplied 

with the GSLIB geostatistical software library; see Deutsch and Journel (1998) for 

further details. 

Model Grid and Stochastic Grid 

The GSLIB subroutine sgsim generates stochastic field values over a regular grid. Use 

of a regular grid facilitates optimisation of search strategies and other aspects of 

stochastic field generation. Groundwater model grids, however, are not always 

regular. A typical model grid may have a set of uniform, relatively small, cells 

disposed over that part of the model domain which is of particular interest; cell 

dimensions may then expand outwards from this area towards the model boundaries. 

A problem which must be addressed in using sgsim for the generation of stochastic 

fields for a groundwater model is how to transfer field values calculated for the 

regular ñstochastic gridò used by sgsim to the finite difference grid used by the model. 

If the model grid is uniform there is no problem, for FIELDGEN then ensures that the 

stochastic and model grids are coincident, thus allowing direct transfer of field values 

from the former to the latter grid. If the model grid is irregular, the transfer of field 

values is slightly more difficult. 

As mentioned above, FIELDGEN allows the generation of stochastic field values 

independently within each zone of a model domain. Where cells within a particular 

zone are uniform, and where the dimensions of all cells within that zone are the same 

as those of the cell of minimum dimensions within the model domain, FIELDGEN 

will, as in the uniform grid case, ensure that the stochastic and model grids coincide. 

However if any cell within a particular zone has a row or column direction width that 

is greater than the minimum row or column direction width occurring anywhere 

within the model domain, then either of two different strategies can be used in 

transferring field values from the stochastic grid to the model grid. In the first of these 

strategies the field value assigned to a particular model cell is equated to that assigned 

to the stochastic grid node which is closest to its centre. In the second strategy the 

value assigned to a model cell is determined through averaging the values of all 

stochastic grid nodes lying within that cell (logarithmic average is undertaken for 

fields which are based on a log variogram). This strategy is useful where it is assumed 

that the variogram(s) used in field generation are based on a support area equal to that 

of the smallest cell in the model domain. Field values assigned to cells of greater area 



FIELDGEN  78 

 

 

are then automatically adjusted for the expansion of support area that occurs when 

working with these larger cells.  

Conditioning Data 

When undertaking stochastic field generation using the sequential simulation method 

it is an easy matter to incorporate independent measurements of the property being 

simulated into the field generation process. Such measurements are normally point-

based; in the groundwater modelling context they will often consist of transmissivity 

or hydraulic conductivity values available from pump-test analyses. When calculating 

a local expected value and standard deviation at a stochastic grid node using kriging 

prior to random field generation at that node, these field measurements are simply 

included in the dataset from which kriging takes place. 

If a conditioning point lies within a groundwater model cell, it does not follow that the 

enclosing cell will be assigned a value equal to the conditioning value. If the nugget 

pertaining to the geostatistical structure upon which stochastic field generation takes 

place is non-zero, then this will certainly not be the case. However if the nugget is 

zero and if the zone within which field generation is occurring contains uniform cells 

(with the cell dimensions being equal to those of the smallest cell in the model 

domain), and if a conditioning point falls exactly at the centre of a cell, then that cell 

will, in fact, be assigned a field value equal to the measurement value. But if, even 

under these uniform grid conditions where the stochastic and model grids coincide, a 

conditioning point does not lie exactly at the centre of a model cell, an expected value 

and standard deviation will be estimated at the cell centre through kriging based on 

conditioning points and field points for which values have already been assigned. 

Because the cell centre does not coincide with a conditioning point, the standard 

deviation at that cell centre will be nonzero. This will virtually ensure that the cell is 

not assigned a value equal to the measurement value at the nearby conditioning point. 

Nevertheless, the closer is the conditioning point to the cell centre, the closer will the 

generated value assigned to the cell be to the measured value associated with the 

conditioning point. 

If the cell in which a conditioning point lies does not have dimensions equal to those 

of the smallest cell in the model domain, then a stochastic grid node will probably not 

lie at the model grid cell centre. Hence even if a conditioning point lies exactly at the 

model cell centre, then because that point does not exactly coincide with any 

particular stochastic grid node, the measurement value associated with the 

conditioning point can provide nothing more than a strong influence on field values 

generated for nearby stochastic grid nodes; it cannot determine the value assigned to 

any one of them exactly. When field values generated at stochastic grid nodes are then 

used to calculate model grid cell values by either of the two methods outlined above, a 

further diminution of the influence of the conditioning point on the field value 

assigned to a particular model cell can be suffered. Nevertheless, the conditioning 

point is still able to exert considerable influence on the value assigned to the model 

cell in which it lies; furthermore, any diminution of this influence takes place in a way 

that is in harmony with geostatistical principals. 



FIELDGEN  79 

 

 

Variograms 

As is described in Section 5 of Part A of this manual and in the documentation of 

program PPK2FAC, each zone within a model domain can be characterised by a 

ñgeostatistical structureò. This structure is comprised of an optional nugget, plus one 

or more variograms. The information required for this geostatistical characterisation is 

supplied in a ñstructure fileò. Four types of variogram can be featured in a structure 

file, viz. spherical, exponential, Gaussian and power.  

The power variogram cannot be used in geostatistical field generation based on the 

sequential simulation principle due to the fact that it has no sill (and hence the field 

which it describes can potentially have infinite variance). Experience has 

demonstrated that problems can be encountered when using a structure which includes 

a Gaussian variogram; in particular, unusually high or low field values can be 

generated, and variance calculation appears to be a little unstable at times. Hence 

FIELDGEN allows the generation of stochastic fields using only two types of 

variogram, viz. the spherical and exponential variograms (ie. ñtype 1ò and ñtype 2ò 

variograms). 

Mean Field Values 

If no conditioning points are available for field generation within a particular zone, the 

user must supply FIELDGEN with the mean field value (ie. the expected field value) 

within that zone. Alternatively, if conditioning data is available, the mean can be 

determined from the conditioning data. 

Log Transformation 

It can be specified in the structure file that a geostatistical structure actually pertains to 

the log of a field, rather than to the field itself. However conditioning data is 

independent of the stochastic characterisation of a field. Thus conditioning 

measurements in the conditioning pilot points file must pertain to native field values 

irrespective of whether the geostatistical structure characterising that field pertains to 

the log of the field or to the native field. Likewise, MODFLOW-compatible real 

arrays generated by FIELDGEN will always contain native field values. However 

fields generated by FIELDGEN on the basis of log variograms are more informatively 

viewed after log-transformation of the respective arrays. 

Running FIELDGEN 

FIELDGEN is run by typing the command:  

 fieldgen  

at the screen prompt. As for other members of the Groundwater Data Utilities, 

FIELDGEN will not run unless a settings file (named settings.fig) is present in the 

directory from which the above command is issued; see Section 1.5 of Part A of this 

manual. 



FIELDGEN  80 

 

 

FIELDGEN first prompts for the name of a grid specification file (see Section 2.9 of 

Part A of this manual). After it has read this file in order to determine the dimensions 

and geometry of the finite difference grid, it asks:- 

Enter name of conditioning pilot points file (<Enter> if none):  

The format of a pilot points file is discussed in Section 2.11 of Part A of this manual. 

The fourth column of this file contains integer values which define the model zone to 

which each pilot point pertains. The fifth column contains measurement values 

associated with pilot point locations, ie. the values used to condition field generation 

in the present case. If no conditioning data is to be used in stochastic field generation, 

respond to the above prompt by simply pressing the <Enter> key. (Note that if 

conditioning data is supplied, it is not necessary that it be supplied for all zones within 

a model domain; thus all zones do not need to be featured in the fourth column of the 

conditioning pilot points file.) 

FIELDGENôs next prompt is:- 

Enter name of zonal integer array file:  

This is the file in which model domain zones are defined. It must contain a single 

integer array in which each zone is characterised by its own specific integer. After it 

has read the integer array, FIELDGEN prompts for the name of the structure file: 

Enter name of structure file:  

As mentioned above, the structure file contains definitions for one or a number of 

geostatistical structures characterising the variation of one or more hydraulic 

properties throughout one or a number of zones within the model domain. See Section 

2.20 of Part A of this manual. 

For each zone found in the integer zonation file, FIELDGEN issues the following 

prompts; possible responses are also shown below. 

For zone characterised by integer value of n: -  

Enter structure name (blank if no field generation for this zone): struct1  

Use simple or ordinary kriging [s/o] in field generation: s  

Enter maximum number of condi tioning points to use: 40  

Enter maximum number of previously simulated nodes to use: 40 

As is apparent from the first of the above prompts, it is not necessary that stochastic 

field generation take place in every zone of the model domain (certainly not in 

inactive zones). However if stochastic field generation is desired for a particular zone, 

the name of a structure found in the structure file must be provided for that zone. As 

was mentioned above, the user is given the choice between simple or ordinary kriging 

for the calculation of expected values and standard deviations at stochastic grid nodes 

prior to field generation at these nodes. Kriging takes place on the basis of 

conditioning data (if it is provided for that zone) and field values already generated at 

other nodes. The user can select how many of each of these are used in the kriging 

process. If the computing time required to generate stochastic fields is inordinately 

large, these numbers should be reduced. Note that if no conditioning data is available 



FIELDGEN  81 

 

 

for a zone, the user is not prompted for the number of conditioning points to use in the 

kriging process. 

Next FIELDGEN asks:- 

How many realizations do you wish to generate?  

Enter filename base for real array files:  

Write formatted or unformatted fil es?  [f/u]:  

Supply an integer in response to the first of the above prompts. FIELDGEN will write 

each real array containing a stochastic field to a separate file. Each such file will be 

provided with a name comprised of the filename base (supplied by the user in 

response to the second of the above prompts), followed by the realisation number, 

followed by the extension ñ.refò if the formatted file option is chose, or by an 

extension of ñ.reuò if the unformatted option is chosen.. As is explained in Section 

2.17 of Part A of this manual, these are the default extensions used by members of the 

Groundwater Data Utilities for formatted and unformatted real array files respectively. 

Thus if the filename base supplied to FIELDGEN in response to the second of the 

above prompts is ñcaseò and the formatted storage option is chosen, FIELDGEN will 

write a series of real array files named case01.ref, case02.ref, case03.ref etc. 

If the model grid is non-uniform, FIELDGEN next asks:- 

The model grid is non - uniform. To conver t fields from stochastic 

subgrid to  model grid do you wish to average subgrid node s or use 

closest subgrid  node ?  [a/c]:  

These options have been discussed above. Choice of the former (ie. ñaveragingò) 

option is in accord with the affect of larger cell areas on the variogram, and the 

ñsmudgingò of heterogeneity that the use of these larger cells entails. Use of the latter 

(ie. ñclosestò) option will result in an overall variogram that more closely resembles 

the variogram used for field generation because no account is taken of the change in 

support caused by variable cell areas. It should be noted however that, as discussed 

above, if stochastic field generation is being undertaken in a zone comprised of 

uniform cells, and if the dimensions of these cells are those of the smallest cell in the 

model domain, then the stochastic subgrid will coincide exactly with the model 

subgrid in this zone; transferral of field values between the two grids is thus 

accomplished on a one-to-one basis. 

Next, FIELDGEN prompts for the mean field value within each model domain zone in 

which stochastic field generation will take place. If conditioning data is available for a 

particular zone, it prompts:- 

Enter mean field value in zone with integer value n 

(Hit <Enter> to obtain this v alue from conditioning points in zone):  

If you press <Enter> in response to this prompt, FIELDGEN will calculate the mean 

field value itself by averaging the values of conditioning data available for this zone; 

if a log variogram prevails in the zone, the logs of conditioning data are averaged 

rather than the native data. If no conditioning data is available for a particular zone, 

FIELDGEN does not write the second line of the above prompt; in this case the user 

has no option but to supply an average field value for the zone. Note that no such 



FIELDGEN  82 

 

 

prompt is issued for zones in which no stochastic field generation takes place. Note 

also that, irrespective of whether or not a log variogram is employed for field 

generation, the value supplied here must pertain to native rather than log-transformed 

values. (It is log-transformed internally.) 

Finally FIELDGEN prompts:- 

Enter integer seed for random number generator [324853]:  

Press the <Enter> key to accept the default, or supply your own integer seed. For some 

applications the seed can be important. For example if you run FIEDGEN twice with 

exactly the same set of input data, including the seed, then the random fields which it 

generates will be identical on both runs. However if the seeds are different for the two 

different runs, then the arrays will be different. 

At this stage FIELDGEN has received all of the information which it requires in order 

to undertake stochastic field generation. It then generates a stochastic field within each 

zone of the model domain for which such a field was requested; it does this n times, 

where n is the number of user-requested realisations, and writes the result to a real 

array file specific to each realisation. FIELDGEN records its activities to the screen as 

it works. 

For complex model domains involving many zones the user is required to respond to 

many FIELDGEN prompts. Do not forget that, as is explained in Section 1.4 of Part A 

of this manual, you can retrace your steps (and correct any mistakes) at any stage 

simply through responding to any prompt with the single letter ñeò (followed by 

<Enter>). FIELDGEN will then issue the previous prompt in its sequence of questions 

to the user. You can continue to retrace your steps in this fashion right back to the 

commencement of FIELDGEN execution. 

Uses of FIELDGEN 

Stochastic field generation is often used to explore the uncertainty in model 

predictions arising from hydraulic property heterogeneity. By undertaking repeated 

model runs based on different FIELDGEN-generated property fields, all of which 

respect any available conditioning data, and all of which respect what is known of the 

geostatistics of an area, the range of uncertainty associated with particular model 

predictions can be explored. 

Where calibration constraints on parameter fields exist in the form of historical head 

and/or other measurements, the exploration of model predictive uncertainty using 

stochastic fields becomes more difficult. In this case a stochastic field must be 

ñwarpedò before being used to make a prediction. ñWarpingò involves multiplication 

of a stochastic field by a maximally smooth ñmultiplier fieldò, the latter being 

calculated through spatial interpolation between pilot points. Use of PEST in 

regularisation mode to determine this field (by estimating the values assigned to the 

pilot points upon which the field is based) ensures that the multiplier field deviates 

from homogeneity only to the minimum extent required to produce a ñwarped 

stochastic fieldò which calibrates the model. Thus the ñwarpedò field retains as much 



FIELDGEN  83 

 

 

of the stochastic structure of the original field as possible while respecting the 

constraints on this field imposed by the calibration process. 

See Also 

See also FAC2REAL and PPK2FAC. 

Reference 

Deutsch, C and Journel, A., 1998. GSLIB Geostatistical Software Library and Userôs 

Guide. Second Edition. Oxford University Press. 

 



GENREAL2SRF  84 

 

 

GENREAL2SRF 

Function of GENREAL2SRF 

GENREAL2SRF writes a SURFER grid file after interpolating from the cell centres 

of a MODFLOW real array to the nodes of the SURFER grid. The MODFLOW grid 

on which the real array is based can be of arbitrary design, orientation and 

geographical location. 

Using GENREAL2SRF 

Like other programs of the Groundwater Data Utility suite, GENREAL2SRF checks 

for the presence of a settings file setting.fig on commencement of execution. It reads 

the COLROW specification from this file.  

Next it prompts for the name of the grid specification file. From this file it reads the 

location and specifications of the MODFLOW grid.  

Its next prompts are: 

  Enter name  of real array file:  

  Enter name of window integer array file:  

As the name suggests, the purpose of the window integer array file is to indicate 

inclusion or exclusion of various parts of the real array from interpolation to the 

SURFER grid. Any real array cell for which the corresponding integer array element is 

zero is not interpolated to the SURFER grid. 

Interpolation to the SURFER grid is bilinear. Thus each SURFER grid node is 

informed by a maximum of four MODFLOW cell centres, namely those that surround 

it. However if a SURFER grid node lies outside the MODFLOW grid, or outside of a 

cell with non-zero window integer array value, then that node is blanked. 

Next GENREAL2SRF asks for details of the SURFER grid to which interpolation 

must take place. Its prompts are: 

 Enter specifications for SURFER grid:  

    X direction grid minimum:  

    X direction spacing:  

    No. of X direction nodes:  

 

    Y direction grid minimum:  

    Y direction spacing:  

    No. of Y direction nodes:  

Finally it asks for the name of the SURFER grid file which it must write: 

 Enter name for SURFER grid file:  

Uses of GENREAL2SRF 

GENREAL2SRF is more flexible than REAL2SRF in that the latter translates a 

MODFLOW real array to SURFER grid file format only if the MODFLOW grid on 



GENREAL2SRF  85 

 

 

which the array is based has uniform dimensions. This translation involves no 

interpolation - just a re-writing of the array in different format. 

GENREAL2SRF is different, however. The MODFLOW and SURFER grids do not 

need to coincide. Furthermore, transferral of values from one to the other requires 

spatial interpolation. Hence the SURFER grid file does not constitute an exact 

reproduction of information within the MODFLOW grid file. However use of 

GENREAL2SRF is far more flexible than that of REAL2SRF. 

See Also 

See also REAL2SRF. 

 

 

 



GENREG  86 

 

 

GENREG 

Function of GENREG 

GENREG assists in the writing of a PEST input dataset where many parameters are 

estimated (often as a result of pilot point parameterisation of a model domain) through 

regularised inversion. It is assumed that a PEST control file already exists, and that 

this PEST control file cites all parameters that require estimation. It is also assumed 

that PESTMODE in this PEST control file is set to ñregularisationò and that a 

ñregularisationò section is present within the control file. However it is not necessary 

that any prior information be present within this file through which regularisation 

constraints are enforced. Nor is it necessary that any regul* observation groups be 

cited within this file. It is GENREGôs task to add regularisation constraints to such a 

PEST control file and to assign them to regularisation groups. 

It is assumed that parameters cited within the existing PEST control file belong to one 

or a number of different ñfamiliesò. In many instances different parameter families 

will pertain to different model layers, different hydrogeological units, and/or represent 

different hydraulic property types. Regularisation constraints can be formulated by 

GENREG on a family-by-family basis, between parameter families, or between 

members of a parameter family and a specific individual parameter. Furthermore, 

constraints can be of many different types. For example they can enforce intra-family 

homogeneity, or adherence to a single or spatially-variant preferred value. In all cases, 

a set of prior information equations representing these constraints is added to the 

ñprior informationò section of the existing PEST control file. (This section is created 

if it is not already present.) Weights are assigned to these new prior information 

equations according to a variety of different philosophies; for example weights can be 

uniform, geostatistically based, calculated as a function of proximity to the nearest 

observation point, or a combination of these. 

While ostensibly a complex program, GENREG was written in order to simplify 

PEST setup for complex calibration problems involving regularised inversion. It 

achieves this by including in the one package the many different regularisation options 

offered through a variety of other utilities documented herein. Thus preparation for 

regularised inversion becomes a three-step process. In the first step the model domain 

is parameterised to a level of detail that is considered appropriate to the aims of the 

current modelling exercise. In the second step a PEST input dataset is constructed in 

which all estimable model parameters are cited. In the third step regularisation 

constraints are added to this PEST input dataset in order to render the inverse problem 

numerically tractable. These constraints may, or may not, take account of the pilot-

point origin of many model parameters. Likewise they may, or may not, take account 

of the observation dataset provided for model calibration in the calculation of relative 

weighting between and within different regularisation groups. (It should not be 

forgotten that, when applied to regularisation groups, the relative rather than absolute 

weight is of most importance. PEST adjusts the contribution that prior information 

makes to the objective function itself as the regularisation process proceeds in 

accordance with the demands of that process.) 



GENREG  87 

 

 

Using GENREG 

The Existing PEST Control File 

As mentioned above, use of GENREG assumes the existence of a PEST control file 

citing all parameters involved in the current parameter estimation problem. Prior to 

running GENREG, parameters which are to be fixed and those which are to be tied 

should be designated as such in the existing PEST control file. This is necessary 

because GENREG takes account of the tied/fixed status of model parameters when 

formulating prior information equations which embody the regularisation constraints 

which make solution of the highly parameterised inverse problem possible. In short, 

no constraint is formulated for a tied or fixed parameter; however the parent of a tied 

parameter, being estimable itself, should be subject to regularisation constraints. 

The existing PEST control file should be as complete as possible. Optionally, it may 

include some prior information equations (which may, or may not, provide 

regularisation constraints and hence may, or may not, belong to observation groups 

whose names commence with the string regul). It should be internally consistent; thus 

the control variable NPAR should equal the number of cited parameters, NOBS 

should equal the number of cited observations, NOBSGP should equal the number of 

cited observation groups, NPRIOR should equal the number of prior information 

equations, etc. Furthermore, the PESTMODE variable should be set to 

ñregularisationò, and a ñregularisationò section should exist within this file through 

which the values of regularisation control variables are supplied. 

Notwithstanding its internal consistency, in most practical applications a pre-

GENREG PEST control file will be declared as erroneous by PESTCHEK because of 

the absence of observation groups whose names begins with regul (and thus are used 

for the provision of regularisation constraints) in spite of the fact that PESTMODE is 

set to ñregularisationò. Hopefully, after GENREG has been run, this situation will 

have been rectified and PESTCHEK will give the resulting PEST control file 

clearance for takeoff. 

What GENREG Does 

GENREG modifies an existing PEST control file in some or all of the following ways. 

¶ It adds a sequence of prior information equations pertaining to parameters 

cited within the ñparameter dataò section of the existing PEST control file. 

These equations take account of the transformation status of existing 

parameters; thus if a particular parameter is log-transformed, any new prior 

information equation that includes that parameter will reference the log of the 

parameter rather than the parameter itself. 

¶ Weights are calculated for the newly-added prior information equations. These 

can be calculated in a variety of ways, some of which take into account the 

locations of adjustable parameters within the model domain (as well as the 

locations of observations on which their estimation is based). 



GENREG  88 

 

 

¶ Each new equation is assigned to an observation group whose name is 

specified by the user; though GENREG does not insist on this, the names of 

such groups should mostly begin with the letters ñregulò. The observation 

groups to which new prior information equations are assigned may, or may 

not, already be cited in the existing PEST control file. If they are not, 

GENREG adds their names to the ñobservation groupsò section of that file. 

¶ ñProblem sizeò variables such as NPRIOR and NOBSGP featured in the 

ñcontrol dataò section of the existing PEST control file are amended as 

necessary in accordance with the updated contents of this file. 

¶ If desired, the values assigned to regularisation control variables (found in the 

ñregularisationò section of the PEST control file) are amended. 

Running GENREG 

GENREG has only three screen prompts. It first prompts for the name of an existing 

PEST control file. It then prompts for the name of a ñGENREG control fileò.  Finally 

it prompts for the name of the new PEST control file that it must write.  

As is standard protocol for members of the PEST Groundwater Data Utility suite, if 

the user responds to any prompt by typing ñeò followed by <Enter>, control is 

returned to the previous prompt. If ñeò is supplied in response to the first prompt, 

GENREG terminates execution. 

GENREG receives processing instructions from its control file, the details of which 

will be described below. Other files which GENREG must read may be cited within 

this file.  

If GENREG encounters an error condition within any part of its input dataset, it will 

terminate execution with an appropriate error message. However it must be carefully 

noted that GENREGôs checking of the existing PEST control file, and other aspects of 

its input dataset, is not nearly as thorough as is that of PESTCHEK. Thus it is possible 

that a GENREG-produced PEST control file may contain inherited inconsistencies; or 

it may contain inconsistencies which were introduced to this dataset though the 

provision of prior information to it. Hence a GENREG-produced PEST control file 

must always be checked with PESTCHEK before PEST is run on the basis of this file. 

The GENREG Control File 

An example of a GENREG control file is provided below. 

 

 

 

 



GENREG  89 

 

 

 

##########################################  

##    EXAMPLE OF A GENREG CONTROL FILE   #  

##########################################  

 

 

START REGULARISATION 

  PHIMLIM 4.34  

  PHIMACCEPT 4.40  

  IREGADJ 1  

END REGULARISATION 

 

 

# Regularisation for layer 1 hydraulic conductivity.  

 

START REGSPEC 

  FAMILY_PREFIX          k_1  

  SPEC_TYPE              within_family  

  REG_TYPE               specified_v alue  

  WEIGHT_TYPE            uniform  

  WEIGHT_OBS_DIST        yes  

  VAL_TYPE               file  

  REG_GROUP              regul1  

  WEIGHT_MULTIPLIER      3.0  

  PILOT_POINTS_FILENAME  "k _1m.dat"  

  OBS_COORD_FILENAME     "16 wells.crd"  

  OBS_DIST_A             0.0  

  OBS_DIST_b             1.0  

  OBS_DIST_c             0.5  

  OBS_DIST_MINWT         0.0  

  OBS_DIST_MAXWT         1e10  

END REGSPEC 

 

# Regularisation for layer 1 specific yield.  

 

START REGSPEC 

  FAMILY_PREFIX          sf1_1  

  SPEC_TYPE              wi thin_family  

  REG_TYPE               specified_value  

  WEIGHT_TYPE            uniform  

  VAL_TYPE               uniform  

  VALUE                  0.1  

  REG_GROUP              regul2  

  WEIGHT                 1.0  

END REGSPEC 

Part of a GENREG control file. 

When reading its control file, GENREG ignores blank lines and lines beginning with 

the ñ#ò character. 

The GENREG control file is subdivided into blocks. Each block must commence with 

the string ñSTART BLOCKNAMEò where ñBLOCKNAMEò must be either 

ñREGULARISATIONò (spelt with a ñzeeò instead of an ñsò if the user insists) or 

ñREGSPECò. It must end with the string END BLOCKNAME. These strings can be 

provided in upper or lower case. 

Blocks can be supplied in any order. Only one REGULARISATION block can be 

provided within a GENREG control file; however there is no limit to the number of 



GENREG  90 

 

 

REGSPEC blocks which can be provided. Each such REGSPEC block contains the 

information which GENREG requires in order to add a set of prior information 

equations to the existing PEST control file. Each GENREG control file must contain 

at least one REGSPEC block. 

Within each block, data is provided using the ñkeywordò or ñvariable nameò concept. 

Thus the name of a variable is supplied, followed by the value assigned to that 

variable. Depending on the variable, its value may be a real number, an integer or an 

ASCII string, including the name of a file. If a filename contains blanks, it must be 

surrounded by quotes.  

Keywords within a block can be supplied in any order. GENREG reads all of these 

keywords before processing the block. It checks that all variables required for an 

identified processing task are present; if any are absent, GENREG reports this 

condition to the user before terminating execution. Keywords cited within a block that 

are not required for a particular processing task are simply ignored. Keywords and 

their values can be provided in upper or lower case. 

In processing a block, GENREG undertakes the following tasks. 

¶ After having read the entire block, GENREG checks that the information 

supplied in the block is complete. 

¶ If required, GENREG then reads any files cited within the block; these may 

include pilot point files and observation coordinate files. 

¶ If an error condition or inconsistency is detected either within the block or in 

any files cited therein, GENREG writes an appropriate error message to the 

screen, and then terminates execution. 

¶ If the contents of the block are consistent and correct, GENREG generates a 

series of prior information equations, writing these to a temporary scratch file 

named t###.###. 

¶ When GENREG has finished processing all of the blocks contained within its 

input dataset, the contents of this scratch file are transferred to the ñprior 

informationò section of the new PEST control file. 

As will be discussed in detail below, the keywords that must be provided in a 

particular block depend on the type of processing that is instigated by that block. 

Hence some keywords must be provided in some blocks, but not in others. If any 

keywords that are necessary for implementation of the action specified in a particular 

block are absent from that block, GENREG will report this absence to the screen and 

then terminate execution. However if keywords are supplied which have no relevance 

to the type of processing undertaken by a particular block, these keywords are ignored 

by GENREG. Thus a user can easily make small modifications to the actions 

requested by the block without having to ensure that keywords made redundant by 

these modifications are removed from the block. 



GENREG  91 

 

 

As is discussed in the PEST manual, each prior information equation appearing in the 

PEST control file must have a name. GENREG generates names itself for equations 

that it adds to the PEST input dataset. Each GENREG-generated prior information 

equation is named grn where gr stands for ñGENREGò and n is the number of the 

new prior information equation (with counting proceeding in the order in which these 

new equations are formulated by GENREG). In order to avoid name conflicts, the user 

should ensure that the names of any prior information equations already present within 

an existing PEST control file supplied to GENREG do not commence with gr. 

The REGULARISATION Block 

The REGULARISATION block is optional; furthermore, only one such block can be 

present within a single GENREG control file. The purpose of this block is to allow 

alterations to be made to regularisation control variables supplied within the existing 

PEST control file. Values for regularisation variables supplied in the GENREG 

control file overwrite those supplied in the existing PEST control file. 

Keywords that may appear in a REGULARISATION block, and the values that may 

be assigned to these keywords, are listed in the table below. Their names correspond 

to the names of regularisation control variables used by PEST; see the PEST manual 

for details. 

Variable name 

(i.e. keyword) 

Allowed values Suggested value 

PHIMLIM  a real number greater than zero problem-specific 

PHIMACCEPT a real number greater than zero normally about 1.05 times PHIMLIM 

FRACPHIM a real number less than unity (including 

zero, but not less) 

0.0 

MEMSAVE ñmemsaveò or ñnomemsaveò ñnomemsaveò or omit 

CONJGRAD ñcgò or ñnocgò ñnocgò or omit 

CGRTOL a real number greater than zero and 

significantly less than unity 

1.0E-5; omit if CONJGRAD is omitted 

CGITNLIM an integer 500; omit if CONJGRAD is omitted 

WFINIT a real number greater than zero 1.0 

WFMIN a real number less than WFINIT 1.0E-10 

WFMAX a real number greater than WFINIT 1.0E10 

WFFAC a real number greater than 1.0 1.3 

WFTOL a real number greater than 0.0 1.0E-2 

LINREG ñlinregò or ñnonlinregò ñnonlinregò 



GENREG  92 

 

 

IREGADJ 0, 1 or 2 1 

Keywords that can appear in a REGULARISATION block. 

Any of the keywords appearing in the above table can be omitted from the 

REGULARISATION block if desired. If the name of a variable is omitted, then the 

value of that variable supplied in the original PEST control file is transferred to the 

new PEST control file. In some instances, however, the inclusion of a variable in the 

REGULARISATION block of a GENREG control file may require that values be 

supplied for variables that do not already appear in the existing PEST control file. For 

example if CONJGRAD is set to ñcgò in the GENREG control file (not presently 

recommended), but is absent from the existing PEST control file, values are also 

required for CGRTOL and CGITNLIM in the REGULARISATION block of the 

GENREG control file. If these are not supplied, GENREG will supply suitable default 

values. 

REGSPEC Block ï General 

Each REGSPEC block presents the means by which a set of prior information 

equations is written providing regularisation constraints/linkages for a subset of the 

parameters appearing in the existing PEST control file. Parameters within the existing 

PEST control file are divided into ñfamiliesò; each family is distinguished from other 

families by its ñparameter prefixò, which must be unique to that family. This prefix 

comprises the first n characters (where n is eight or less) of the names of all 

parameters belonging to that family.  

Where parameters are linked to pilot points, and where processing undertaken by 

GENREG requires that a pilot points file pertaining to a family of parameters be read, 

the name of each parameter and the name of a pilot point to which it corresponds need 

not be the same. All that is required is that the pilot point name be the same as the 

parameter ñroot nameò ï that is, the name of the parameter minus its prefix. 

Alternatively, parameter names and pilot point names can correspond in full, for 

GENREG allows both of these alternatives.  

Regularisation can be used to assign preferred values to parameters within an 

individual family, to formulate a pervasive set of equality relationships between 

members of the same family, to assign preferred values to differences or ratios of 

parameter values where the parameters involved in these relationships belong to 

different families, or to provide ratio or difference linkages between an individual 

parameter and all members of a parameter family. The nature of the relationships to be 

formulated by a particular REGSPEC block is supplied through the SPEC_TYPE and 

REG_TYPE keywords. Both of these keywords must be present in all REGSPEC 

blocks. 

Three options are available for the SPEC_TYPE keyword, these being 

ñwithin_familyò, ñbetween_familyò and ñindiv_familyò. Each of these options is now 

discussed in detail.  



GENREG  93 

 

 

Within_Family Regularisation 

Two different types of regularisation can be applied to members of the same 

parameter family. The type of ñwithin_familyò regularisation undertaken by a 

particular REGSPEC block is set by the REG_TYPE keyword. Two values are 

permitted for this keyword when SPEC_TYPE is set to ñwithin_familyò, viz. 

ñspecified_valueò and ñequalityò. 

REGSPEC block keywords (and their values) which can be used if SPEC_TYPE is set 

to ñwithin_familyò and REG_TYPE is set to ñspecified_valueò are listed in the 

following table. 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñwithin_familyò for the present table 

REG_TYPE sets regularisation type ñspecified_valueò for the present table 

FAMILY_PREFIX identifies subset of parameters for 

which regularisation is performed 

a string of up to 8 characters 

REG_GROUP sets the regularisation group to which 

new prior information equations are 

assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 

WEIGHT_TYPE determines how weights are calculated must be ñuniformò if REG_TYPE is 

ñspecified_valueò 

WEIGHT weight assigned to all new prior 

information equations 

a non-negative real number 

WEIGHT_OBS_DIST determines weather weights are 

multiplied by a factor that is dependent 

on distance to nearest observation 

point 

ñyesò or ñnoò; if this keyword is 

omitted it is assumed to be ñnoò 

OBS_COORD_FILENAME name of an observation coordinates 

file; required only if 

WEIGHT_OBS_DIST is set to ñyesò 

a text string, surrounded by quotes if it 

contains a space 

WEIGHT_MULTIPLIER the factor by which all weights for new 

prior information equations are 

multiplied; optional 

a non-negative real number; assumed 

to be unity if omitted 

OBS_DIST_A OBS_DIST_B  

OBS_DIST_C 

OBS_DIST_MINWT 

OBS_DIST_MAXWT 

real numbers used in observation-

distance weight factor calculation; 

required only if WEIGHT_OBS_DIST 

is set to ñyesò 

must be such that all calculated 

weights are non-negative 

VAL_TYPE determines how the ñspecified valueò 

for each new prior information 

equation is obtained 

ñuniformò or ñfileò 

VALUE the specified value for all new prior 

information equations; required if 

VAL_TYPE is set to ñuniformò 

a real number 

PILOT_POINTS_FILENAME the name of a pilot points file; required 

if WEIGHT_TYPE is set to ñobs_distò 

a text string, surrounded by quotes if it 



GENREG  94 

 

 

and/or ñvalue_typeò is set to ñfileò contains a space 

Keywords required when SPEC_TYPE is ñwithin_familyò and ñREG_TYPEò is 

ñspecified valueò. 

When SPEC_TYPE is set to ñwithin_familyò, the parameter family for which 

regularisation constraints are formulated is identified by the FAMILY_PREFIX 

keyword. The regularisation group to which all new prior information equations will 

be assigned is designated through the REG_GROUP keyword. (Note that it makes 

sense to assign each new set of prior information equations to a new regularisation 

group; this allows PEST to conduct automatic inter-group regularisation weights 

adjustment in accordance with the setting of the IREGADJ regularisation control 

variable.) 

Each ñspecified_valueò prior information equation written by GENREG is of the 

form:- 

pi_name  1.0  * param_name = specified_value obs_group weight  

or 

pi_name 1. 0 * log(param_name) = log(specified_value) obs_group weight  

The second of the above options is selected if the parameter cited in the prior 

information equation is log-transformed in the ñparameter dataò section of the existing 

PEST control file; the first is selected if the parameter is not log-transformed. No prior 

information equation is written for tied or fixed parameters. 

The same preferred value can be assigned to all new prior information equations, or a 

preferred value can be assigned on a parameter-by-parameter basis. The first option is 

selected by setting VAL_TYPE to ñuniformò; in that case a VALUE keyword must be 

supplied in order to designate the uniformly-applied specified value. Non-uniform 

specified values can be selected by setting VAL_TYPE to ñfileò. In this case a 

PILOT_POINTS_FILENAME must be supplied, from which pilot point names, 

coordinates, zones and values are read. (Recall that a pilot points file must contain 

five columns of data; the first contains pilot point names, the second and third contain 

pilot point eastings and northings, the fourth contains pilot point zone numbers, while 

the fifth contains pilot point parameter values.) At least some (though not necessarily 

all) pilot point names within this pilot points file must correspond to parameters 

belonging to the currently-selected parameter family. As stated above, pilot point 

names are linked to parameter names either by equality of name, or by equality of the 

pilot point name to the parameter root name (i.e. the parameter name minus its family 

prefix); GENREG attempts to match parameter and pilot point names both ways. 

GENREG reads preferred parameter values from the fifth column of the pilot points 

file. 

Each new prior information equation must be assigned a weight. GENREG requires 

that WEIGHT_TYPE be set to ñuniformò when REG_TYPE is set to 

ñspecified_valueò; the weight that is assigned to all new prior information equations is 

then supplied through the WEIGHT keyword. Optionally, the weight applied to each 

prior information equation can then be multiplied by a factor that is a function of the 

distance between the parameter cited in the prior information equation and the nearest 



GENREG  95 

 

 

observation point. (Increasing regularisation weights with distance from observation 

points can add stability to the regularised inversion process.) This option is selected by 

including a WEIGHT_OBS_DIST keyword in the REGSPEC block and setting its 

value to ñyesò. To de-activate this option, set WEIGHT_OBS_DIST to ñnoò or simply 

omit this keyword. 

If WEIGHT_OBS_DIST is set to ñyesò, the name of both a pilot points file (from 

which parameter coordinates are read) and an observation coordinates file (from 

which observation coordinates are read) must be provided in the REGSPEC block. 

The first is provided through a PILOT_POINTS_FILENAME keyword, while the 

latter is provided through an OBS_COORD_FILENAME keyword. (Note that if 

VAL_TYPE is set to ñfileò GENREG will read preferred parameter values from this 

same pilot points file.)  

An observation coordinates filename must have at least three columns of data. 

GENREG reads only the second and third columns of this file, assuming that 

observation point eastings lie within the second column and that observation point 

northings lie within the third column. Then, for each parameter belonging to the 

current family, it finds the distance between the corresponding pilot point and the 

closest observation location. It then calculates a weight factor for the pertinent 

specified-value prior information equation using the formula:- 

  weight_factor = a + b*minimum_distance** c 

(where ñ**ò stands for ñraised to the power ofò). a, b and c cited in the above equation 

are supplied through the OBS_DIST_A, OBS_DIST_B and OBS_DIST_C keywords 

respectively. Lower and upper limits can be imposed on weight factors calculated in 

this manner using the OBS_DIST_MINWT and OBS_DIST_MAXWT keywords; set 

these to zero and 1.0E20 respectively if you do not wish to impose such limits. All of 

these keywords must be supplied in a REGSPEC block if WEIGHT_OBS_DIST is set 

to ñyesò. 

If desired, further weight multiplication can take place by assigning a value to the 

WEIGHT_MULTIPLIER keyword. Weights for all new prior information equations 

formulated by the REGSPEC block are multiplied by this multiplier, irrespective of 

whether distance-dependent multiplication has also taken place. If omitted, the 

WEIGHT_MULTIPLIER is assumed to be unity. 

If REG_TYPE is set to ñequalityò, then GENREG writes a series of prior information 

equations of the type:- 

pi_name 1.0 *  param1 ï 1.0 * param2 = 0.0 obs_group weight  

or 

pi_name 1.0 * log(param 1)  ï 1.0 * log(param2)  = 0.0  obs_group weight  

The latter type of equation is written if all adjustable (i.e. neither tied nor fixed) 

parameters in the selected family are log-transformed, while the former is written if all 

adjustable parameters are untransformed. Mixing of transformation types within the 

selected family is not allowed if REG_TYPE is set to ñequalityò. 



GENREG  96 

 

 

If ñequalityò regularisation is implemented, an EQUALITY_TYPE keyword must be 

present in the REGSPEC block. At present only two options are allowed for this 

keyword, viz. ñnext_pcfò and ñspatialò. In the former case parameters are linked 

through proximity in the ñparameter dataò section of the PEST control file. In the 

latter case, parameters are selected for equality constraint formulation based on spatial 

proximity. 

The following table shows keyword options when EQUALITY_TYPE is designated 

as ñnext_pcfò. 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñwithin_familyò for the present 

table 

REG_TYPE sets regularisation type ñequalityò for the present table 

EQUALITY_TYPE sets method of selecting parameters 

for formulation of equality 

constraints 

ñnext_pcfò for present table 

FAMILY_PREFIX identifies subset of parameters for 

which regularisation is performed 

a string of up to 8 characters 

REG_GROUP sets the regularisation group to 

which new prior information 

equations are assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 

WEIGHT_TYPE determines how weights are 

calculated 

must be ñuniformò if 

EQUALITY_TYPE is set to 

ñnext_pcfò 

WEIGHT weight assigned to all new prior 

information equations 

a non-negative real number 

WEIGHT_OBS_DIST determines weather weights are 

multiplied by a factor that is 

dependent on distance to nearest 

observation point 

must be set to ñnoò, or omitted from 

REGSPEC block, if EQUALITY 

type is set to ñnext_pcfò 

WEIGHT_MULTIPLIER the factor by which all weights are 

multiplied for new prior information 

equations; optional 

a non-negative real number; 

assumed to be unity if omitted 

Keywords required when SPEC_TYPE is ñwithin_familyò, ñREG_TYPEò is 

ñequalityò and EQUALITY_TYPE is ñnext_pcfò. 

If n parameters within the currently selected family are adjustable (i.e. neither tied nor 

fixed), then GENREG writes n prior information equations for that family when 

EQUALITY_TYPE is set to ñnext_pcfò. Each such equation cites two parameters, 

these parameters being featured on subsequent lines of the ñparameter dataò section of 

the PEST control file. (If there are non-adjustable parameters, or parameters belonging 

to different families, mixed with parameters of the selected family, then such 

intervening lines are skipped when forging equality linkages in this manner.) Only 

uniform weighting is allowed; hence WEIGHT_TYPE must be set to ñuniformò and a 

WEIGHT keyword must be supplied. A WEIGHT_MULTIPIER can be optionally 



GENREG  97 

 

 

supplied. However observation-distance-dependent weight factor calculation is not 

allowed; hence WEIGHT_OBS_DIST must be set to ñnoò or omitted. 

More complex inter-parameter equality constraints can be introduced by GENREG if 

EQUALITY_TYPE is set to ñspatialò. In this case equality linkages, and the weights 

assigned to the prior information equations which enforce these linkages, are 

determined by the spatial disposition of parameters. Because GENREG must know 

parameter locations, a PILOT_POINTS_FILENAME is an essential component of a 

REGSPEC block in which EQUALITY_TYPE is set to ñspatialò.  

The following table lists REGSPEC keyword options when SPEC_TYPE is set to 

ñwithin_familyò, REG_TYPE is set to ñequalityò and EQUALITY_TYPE is set to 

ñspatialò. 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñwithin_familyò for the present table 

REG_TYPE sets regularisation type ñequalityò for the present table 

EQUALITY_TYPE sets method of selecting parameters 

for imposing equality constraints 

ñspatialò for present table 

FAMILY_PREFIX identifies subset of parameters for 

which regularisation is performed 

a string of up to 8 characters 

REG_GROUP sets the regularisation group to 

which new prior information 

equations are assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 

PILOT_POINTS_FILENAME the name of a pilot points file a text string, surrounded by quotes if 

it contains a space 

WEIGHT_TYPE determines how weights are 

calculated 

ñuniformò, ñsep_powerò, ñsep_expò 

or ñsep_logò 

WEIGHT weight assigned to all new prior 

information equations; required 

only if WEIGHT_TYPE is set to 

ñuniformò 

a non-negative real number 

SEARCH_RADIUS, 

MIN_PILOT_POINTS, 

MAX_PILOT_POINTS 

determines number of equality 

linkages to which any individual 

parameter is subject 

SEARCH_RADIUS is a positive 

real number: the other variables are 

integers 

WEIGHT_SEP_A, 

WEIGHT_SEP_B, 

WEIGHT_SEP_C, 

WEIGHT_SEP_ANIS_BEARING, 

WEIGHT_SEP_ANIS_RATIO, 

WEIGHT_SEP_MAXWT, 

WEIGHT_SEP_MINWT 

used in weight calculation when 

WEIGHT_TYPE is set to 

ñsep_powerò, ñsep_expò or 

ñsep_logò 

real numbers 

WEIGHT_OBS_DIST determines weather weights are 

multiplied by a factor that is 

dependent on distance to nearest 

observation point 

ñyesò or ñnoò; assumed to be ñnoò if 

omitted 



GENREG  98 

 

 

OBS_DIST_A OBS_DIST_B  

OBS_DIST_C 

OBS_DIST_MINWT 

OBS_DIST_MAXWT 

real numbers used in observation-

distance weight factor calculation; 

required only if 

WEIGHT_OBS_DIST is set to 

ñyesò 

must be such that all calculated 

weights are non-negative 

WEIGHT_MULTIPLIER a factor by which all weights for 

new prior information equations are 

multiplied; optional 

a non-negative real number; 

assumed to be unity if omitted 

Keywords required when SPEC_TYPE is ñwithin_familyò, ñREG_TYPEò is 

ñequalityò and EQUALITY_TYPE is ñspatialò. 

Prior information equations generated by GENREG with EQUALITY_TYPE set to 

ñspatialò are the same as those generated when EQUALITY_TYPE is set to 

ñnext_pcfò. Similarly, it is a necessary prerequisite for formulation of equality 

constraints that all adjustable parameters belonging to a particular family be log-

transformed or untransformed; mixed transformation types cannot be accommodated 

when forging parameter equality linkages.  

Selection of parameters for inclusion in prior information equations which enforce 

equality constraints is based on the values assigned to the SEARCH_RADIUS, 

MAX_PILOT_POINT and MIN_PILOT_POINT keywords. For each parameter, a 

linkage is made to the closest MAX_PILOT_POINT parameters within a distance of 

SEARCH_RADIUS from that parameter. If less than MAX_PILOT_POINT 

parameters lie within this search radius, then only MAX_PILOT_POINT such 

linkages are forged. However if the number of linkages is less than 

MIN_PILOT_POINTS, GENREG ceases execution with an appropriate error 

message; in this case SEARCH_RADIUS will probably need to be increased (or 

MIN_PILOT_POINTS lowered ï but it cannot be less than 1). 

The weights assigned to new prior information equations can be uniform (in which 

case WEIGHT_TYPE should be set to ñuniformò and a WEIGHT keyword should be 

supplied), or can be generated as a function of the separation between the two 

parameters cited within each equation. Three options are available for this latter 

method of weights calculation; one of them can be selected by setting the 

WEIGHT_TYPE keyword to ñsep_powerò, ñsep_expò or ñsep_logò. 

GENREG uses the following equation to generate weights using the ñsep_powerò 

option:- 

 weight = a + b * separation** c 

where separation in the above equation is the distance between the two parameters 

featured in the prior information equation (possibly adjusted for anisotropy ï see 

below). For the ñsep_expò option the equation is:- 

 weight = a + b * exp(-c*separation) 

while if WEIGHT_TYPE is assigned the string ñsep_logò, the equation is:- 



GENREG  99 

 

 

 weight = a + b * [log10(separation)]** c 

Values for a, b and c featured in the above equations must be assigned to the 

WEIGHT_SEP_A, WEIGHT_SEP_B and WEIGHT_SEP_C keywords. Note that 

GENREG insists that WEIGHT_SEP_C be positive if WEIGHT_TYPE is ñsep_expò. 

(Increasing weights with inter-parameter separation is not necessarily a bad idea, but 

should not be done exponentially.) GENREG will also object if two parameters 

occupy the same location and WEIGHT_TYPE is set to ñsep_logò. 

As well as requiring values for WEIGHT_SEP_A, WEIGHT_SEP_B and 

WEIGHT_SEP_C, GENREG also requires values for WEIGHT_SEP_MAXWT, 

WEIGHT_SEP_MINWT, WEIGHT_SEP_ANISOTROPY_BEARING and 

WEIGHT_SEP_ANISOTROPY_RATIO if WEIGHT_TYPE is set to ñsep_powerò, 

ñsep_expò or ñsep_logò. Weights calculated using any of the above three equations are 

limited from below using WEIGHT_SEP_MINWT and capped from above using 

WEIGHT_SEP_MAXWT. If it is desired that no such limitations be imposed on 

calculated weights, WEIGHT_SEP_MINWT should be set to 0.0 and 

WEIGHT_SEP_MAXWT should be set to a very high value (for example 1.0E20).  

Sometimes it is desired that equality linkages be more strongly enforced in some 

directions than in others. This can be accomplished by providing GENREG with a 

WEIGHT_SEP_ANISOTROPY_RATIO which is greater than unity. (To avoid 

confusion, GENREG will not accept an anisotropy ratio value that is less than unity.). 

WEIGHT_SEP_ANISOTROPY_BEARING should be provided with a value that 

points in the direction of maximum parameter continuity, that is, in the direction in 

which equality linkages should be most strongly enforced. In this case GENREG 

multiplies distances in a direction perpendicular to this bearing by the value of 

WEIGHT_SEP_ANISOTROPY_RATIO. Thus ñeffective separationsò are increased 

in the direction which is perpendicular to the axis of anisotropy. Hence if a weights 

calculation strategy is adopted that decreases weights with increasing inter-parameter 

separation, weights will decrease more rapidly in a direction perpendicular to the axis 

of anisotropy than along this axis. 

Note that a WEIGHT_SEP_ANSISTROPY_BEARING of zero degrees is equivalent 

to north. Note also that setting WEIGHT_SEP_ANISOTROPY_RATIO to unity 

effectively disables anisotropy considerations; the value supplied for 

WEIGHT_SEP_ANISTROPY_BEARING then becomes redundant. 

From the above discussion it is apparent that GENREG uses inter-parameter 

separations for two different purposes. One is for the calculation of weights using the 

above equations; the other is in the selection of points for which equality linkages are 

constructed, as determined by the SEARCH_RADIUS, MAX_PILOT_POINT and 

MIN_PILOT_POINT keywords. Modification of inter-parameter distances through 

the adoption of a non-unity anisotropy ratio affects both of these processes. Thus the 

search radius is shortened in the direction perpendicular to the axis of 

anisotropy as supplied through the WEIGHT_SEP_ANISOTROPY_BEARING 

keyword. 



GENREG  100 

 

 

Whether weights for new prior information equations are assigned a uniform value, or 

are calculated on the basis of inter-parameter separation, these weights can optionally 

be multiplied by a factor that depends on the distance between parameters involved in 

each such linkage and the nearest observation point. For each of the two parameters 

cited in any new prior information equation, GENREG calculates the distance to the 

nearest observation point; observation point coordinates are supplied through an 

OBS_COORD_FILENAME file. The higher of these two distances is used in weight 

factor calculation on the basis of the OBS_DIST_A, OBS_DIST_B, OBS_DIST_C, 

OBS_DIST_MINWT and OBS_DIST_MAXWT keywords in the manner already 

described. Note that the latter two variables limit the weight factor, rather than the 

calculated weights themselves. Note also that such observation-distance-based 

modification of weights will only occur if the optional WEIGHT_OBS_DIST 

keyword is set to ñyesò. It should be further noted that observation-parameter 

distances are not affected by a non-unity anisotropy ratio. 

If desired, weights can undergo final modification using the optional 

WEIGHT_MULTIPLIER keyword. This is applied uniformly to all new prior 

information equations generated by the REGSPEC block, irrespective of how these 

weights were calculated. 

Between_Family Regularisation 

GENREG allows prior information equations to be written expressing relationships 

between members of different parameter families. As for ñwithin-familyò 

regularisation, a number of different options exist for the formulation of ñbetween-

familyò regularisation constraints. However, in any one GENREG block, only two 

parameter families can be selected for the formulation of these constraints. These are 

identified through the PARAMETER_PREFIX_1 and PARAMETER_PREFIX_2 

keywords. 

A pre-requisite to the generation of a set of ñbetween-familyò prior information 

equations is that all adjustable (i.e. untied and unfixed) members of the selected 

parameter families be either log-transformed or untransformed. The user must provide 

a ratio or difference which is then applied to pairs of parameters (one member of each 

pair is taken from each family) through a prior information equation of the type:- 

pi_name 1.0 * par1 ï 1.0 * par2 = difference obs_group weight  

or 

pi_name 1.0 * log(par1) ï 1.0 * log(par2)  = log(ratio) obs_group weight  

As is apparent from the above equations, a parameter difference is applicable when 

members of both selected parameter families are untransformed, whereas a parameter 

ratio is appropriate where the parameters belonging to both families are log-

transformed; in the latter case a difference equation is written with respect to the logs 

of the pertinent parameters, this difference being equated to the log (to base 10) of the 

user-supplied parameter ratio. This ratio must be greater than zero or GENREG will 

object. 



GENREG  101 

 

 

For the purpose of generating prior information equations, parameters from different 

families can be matched either by name or by spatial proximity. This selection is made 

through the DIFFRAT_TYPE keyword. (ñDIFFRATò is short for ñDIFFerence or 

RATioò.) The table below shows permissible keywords and keyword values when the 

ñnameò option is selected. 

 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñbetween_familyò for the present 

table 

REG_TYPE sets regularisation type ñdifferenceò or ñratioò for the 

present table 

DIFFRAT_TYPE sets parameter selection method for 

formulation of difference or ratio 

prior information equations 

ñnameò for the present table 

DIFFRAT_VAL_TYPE sets source of difference or ratio ñuniformò or ñfileò 

VALUE sets difference or ratio if 

DIFFRAT_VAL_TYPE is set to 

ñuniformò 

a real number; this number must be 

greater than zero if REG_TYPE is 

set to ñratioò 

PILOT_POINTS_FILENAME_DR the name of a pilot points file from 

which differences or ratios are read 

if DIFFRAT_VAL_TYPE is set to 

ñfileò; also used for parameter 

locations if WEIGHT_OBS_DIST 

is set to ñyesò 

fifth column of this table must 

contain real numbers; these numbers 

must be greater than zero if 

REG_TYPE is set to ñratioò; second 

and third columns must contain pilot 

point eastings and northings. 

FAMILY_PREFIX_1 identifies subset of parameters for 

inclusion in first parameter family 

a string of up to 8 characters 

FAMILY_PREFIX_2 identifies subset of parameters for 

inclusion in second parameter 

family 

a string of up to 8 characters 

REG_GROUP sets the regularisation group to 

which new prior information 

equations are assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 

WEIGHT_TYPE determines how weights are 

calculated 

must be ñuniformò for 

ñbetween_familyò regularisation 

WEIGHT weight assigned to all new prior 

information equations 

a non-negative real number 

WEIGHT_OBS_DIST determines whether weights are 

multiplied by a factor that is 

dependent on distance to nearest 

observation point 

ñyesò or ñnoò; assumed to be ñnoò if 

omitted 

OBS_DIST_A OBS_DIST_B  

OBS_DIST_C 

OBS_DIST_MINWT 

OBS_DIST_MAXWT 

used in observation-distance weight 

factor calculation; required only if 

WEIGHT_OBS_DIST is set to 

ñyesò 

real numbers; must be such that all 

calculated weights are non-negative 



GENREG  102 

 

 

WEIGHT_MULTIPLIER the factor by which all weights for 

new prior information equations are 

multiplied; optional 

a non-negative real number; 

assumed to be unity if omitted 

Keywords required when SPEC_TYPE is ñbetween_familyò, ñREG_TYPEò is 

ñdifferenceò or ñratioò, and DIFFRAT_TYPE  is ñnameò. 

If DIFFRAT is set to ñnameò, then the parameter families selected through the 

FAMILY_PREFIX_1 and FAMILY_PREFIX_2 keywords must meet certain criteria. 

These are:- 

¶ each family must possess the same number of adjustable parameters; 

¶ the names of these parameters must be identical between families except for 

the respective family prefix; 

¶ all adjustable members of both families must be either untransformed or log-

transformed. 

If there are n adjustable parameters in either selected parameter family, GENREG 

writes n prior information equations of the type illustrated above. Parameters 

appearing in each equation are linked by name; that is, except for the family prefix, 

the names of the two parameters appearing in any one prior information equation will 

be identical. It is important to note that in each of these equations the parameter 

selected through FAMILY_PREFIX_1 appears first, while the parameter selected 

through FAMILY_PREFIX_2 appears second. The difference or ratio always applies 

to the parameters in this order. 

The value of the difference or ratio can be the same for all parameter pairs, or can be 

assigned on a parameter-by-parameter basis. In the first case DIFFRAT_VAL_TYPE 

should be set to ñuniformò, and the difference or value supplied through the VALUE 

keyword. In the second case DIFFRAT_VAL_TYPE should be set to ñfileò and the 

name of a pilot points file should be assigned to the 

PILOT_POINTS_FILENAME_DR keyword. Pilot point names within this file should 

be the same as the names of parameters belonging to the first parameter family. 

Alternatively, pilot point names should be the same as parameter root names (i.e. the 

parameter name without the family prefix); in the latter case pilot point names are 

therefore similarly linked to the members of the second parameter family. 

When ñbetween_familyò regularisation is implemented using the ñnameò option, 

WEIGHT_TYPE must be set to ñuniformò; the weight to be used in ñbetween-familyò 

prior information equations is then supplied through the WEIGHT keyword. 

WEIGHT_OBS_DIST can optionally be set to ñyesò, in which case prior information 

weights supplied in this manner are multiplied by a factor that is a function of the 

distance between parameters featured in a given prior information equation and the 

nearest observation point. When DIFFRAT_TYPE is set to ñnameò, it is assumed that 

both parameters featured in any new prior information equation have the same easting 

and northing, these being read from the PILOT_POINTS_FILENAME_DR file. As 

stated above, points within this file can be linked by name to parameters of the first 



GENREG  103 

 

 

parameter family, or by parameter root name to both parameter families. Note that 

where WEIGHT_OBS_DIST is set to ñyesò and DIFFRAT_VAL_TYPE is set to 

ñfileò, the PILOT_POINTS_FILENAME_DR file is used twice by GENREG ï once 

to obtain the values of parameter-by-parameter differences or ratios, and once to 

obtain parameter coordinates for use in WEIGHT_OBS_DIST prior information 

weight modification. 

A second major processing option for ñbetween_familyò regularisation can be 

implemented by setting DIFFRAT_TYPE to ñspatialò. In this case GENREG does not 

match parameters from the two selected parameter families by name; rather it matches 

them by spatial proximity. Hence a pilot points file must be read by GENREG for 

each parameter family. The names of these files are supplied through the 

PILOT_POINTS_FILENAME_1 and PILOT_POINTS_FILENAME_2 keywords; 

parameter families associated with these pilot point files must correspond to the 

FAMILY_PREFIX_1 and FAMILY_PREFIX_2 families respectively. (As usual, 

when reading a pilot points file, GENREG attempts to match pilot points to 

parameters using full parameter and pilot point names and, if this is not successful, 

pilot point names and parameter root names.) 

For the ñspatialò DIFFRAT_TYPE option, DIFFRAT_VAL_TYPE must be set to 

ñuniformò. Thus all prior information equations formulated by the GENREG block 

will feature the same number on the right hand side of the equality sign. As for the 

ñnameò option, all adjustable parameters in both families must be either log-

transformed or not transformed at all. In the former case REG_TYPE must be 

supplied as ñratioò and in the latter case it must be supplied as ñdifferenceò. 

Keyword options for the ñspatialò DIFFRAT_TYPE alternative are set out in the table 

below. 

 

 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñbetween_familyò for the present 

table 

REG_TYPE sets regularisation type ñdifferenceò or ñratioò for the 

present table 

DIFFRAT_TYPE sets parameter selection method for 

formulation of difference or ratio 

prior information equations 

ñspatialò for the present table 

DIFFRAT_VAL_TYPE sets source of difference or ratio must be ñuniformò if 

DIFFRAT_TYPE is set to ñspatialò 

VALUE sets difference or ratio a real number; this number must be 

greater than zero if REG_TYPE is 

set to ñratioò 



GENREG  104 

 

 

FAMILY_PREFIX_1 identifies subset of parameters for 

inclusion in first parameter family 

a string of up to 8 characters 

FAMILY_PREFIX_2 identifies subset of parameters for 

inclusion in second parameter 

family 

a string of up to 8 characters 

PILOT_POINTS_FILENAME_1 the name of a pilot points file from 

which eastings and northings for 

first parameter family are read 

a filename text string 

PILOT_POINTS_FILENAME_2 the name of a pilot points file from 

which eastings and northings for 

second parameter family are read 

a filename text string 

SEARCH_RADIUS distance from a pilot point in one 

family for which a match is sought 

from other family 

a real number greater than zero 

MAX_PILOT_POINTS maximum number of inter-family 

linkages to create from a member of 

one family to members of the other 

family 

an integer greater than zero 

MIN_PILOT_POINTS GENREG will issue either an error 

or warning message if this number 

of parameters from one parameter 

family is not found within one 

search radius of a member of the 

other family 

an integer greater than zero 

WARN_LESS_MIN issue a warning rather than error 

message if MIN_PILOT_POINTS 

members of one family are not 

found within one 

SEARCH_RADIUS of a member of 

the other family 

ñyesò or ñnoò; if omitted ñnoò is 

assumed and an error message is 

issued prior to cessation of 

GENREG execution 

REG_GROUP sets the regularisation group to 

which new prior information 

equations are assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 

WEIGHT_TYPE determines how weights are 

calculated 

must be ñuniformò for 

ñbetween_familyò regularisation 

WEIGHT weight assigned to all new prior 

information equations 

a non-negative real number 

WEIGHT_OBS_DIST determines weather weights are 

multiplied by a factor that is 

dependent on distance to nearest 

observation point 

ñyesò or ñnoò; assumed to be ñnoò if 

omitted 

OBS_DIST_A OBS_DIST_B  

OBS_DIST_C 

OBS_DIST_MINWT 

OBS_DIST_MAXWT 

real numbers used in observation-

distance weight factor calculation; 

required only if 

WEIGHT_OBS_DIST is set to 

ñyesò 

must be such that all calculated 

weights are non-negative 



GENREG  105 

 

 

WEIGHT_MULTIPLIER the factor by which all weights are 

multiplied for new prior information 

equations; optional 

a non-negative real number; 

assumed to be unity if omitted 

Keywords required when SPEC_TYPE is ñbetween_familyò, ñREG_TYPEò is 

ñdifferenceò or ñratioò and DIFFRAT_TYPE is ñspatialò. 

In forming parameter linkages for the purpose of writing prior information equations, 

GENREG first traverses the elements of the first parameter family. For each member 

of this family it finds all parameters from the second family that lie within one 

SEARCH_RADIUS of this parameter. It then selects the closest 

MAX_PILOT_POINTS of these second-family parameters for the writing of prior 

information equations. If fewer than this number of pilot points lie within one search 

radius of the first-family parameter, it simply uses the parameters that it finds. 

However if less than MIN_PILOT_POINTS second-family parameters are found 

within this radius it either warns the user of this, or ceases execution with an 

appropriate error message. The user selects between these modes of GENREG 

behaviour through the WARN_LESS_MIN keyword. If this keyword is omitted or set 

to ñnoò, the error message alternative is chosen. 

After having traversed the list of parameters comprising the first parameter family, 

GENREG traverses the list of parameters belonging to the second parameter family. 

The parameter search process is repeated. However in generating prior information 

equations on the basis of this second sweep, GENREG does not re-write equations 

that arose out of its first parameter sweep; it only generates a new equation if traversal 

of the second parameter list results in a new between_family parameter linkage being 

formed. 

As for the ñnameò DIFFRAT_TYPE option, WEIGHT_TYPE must be set to 

ñuniformò, and the weight itself supplied through the WEIGHT keyword. However 

weight multiplication based on distance to observation points will be undertaken if 

WEIGHT_OBS_DIST is set to ñyesò. In this case, values must be assigned to all of 

the OBS_DIST_A, OBS_DIST_B, OBS_DIST_C, OBS_DIST_MINWT and 

OBS_DIST_MAXWT keywords. Alternatively, if WEIGHT_OBS_DIST is set to 

ñnoò or omitted, these latter keywords can also be omitted. Note that when evaluating 

the parameter-to-observation point distance on which this weight factor calculation is 

based, GENREG first calculates the distance to the nearest observation point from 

both parameters cited in each new prior information equation. It then uses the higher 

of these two distances as a basis for weight factor calculation. Note also that, as 

discussed above, the OBS_DIST_MINWT and OBS_DIST_MAXWT keywords are 

used to constrain the weight factor calculated through the WEIGHT_OBS_DIST 

equation, rather than the weight itself. 

As usual, a WEIGHT_MULTIPLER keyword can be used for final multiplication of 

prior information weights after all other weight processing has taken place. 

The user may be wondering why the WARN_LESS_MIN option is available for 

ñbetween_familyò prior information equation generation under the ñspatialò option, 

but is not available for ñwithin_familyò spatially-based prior information equation 



GENREG  106 

 

 

generation. In most cases where ñwithin_familyò regularisation is undertaken, it is 

applied to parameters comprising a single horizontal or sub-horizontal model layer or 

hydrgeologic unit. However ñbetween_familyò regularisation is normally invoked in 

order to stabilize the estimation of parameters in separate layers, with each family 

being assigned to a separate layer or unit. In the former case, it is important that all 

members of the parameter family be included in at least one prior information 

equation. In the latter case, members of each family will probably already be involved 

in at least one ñwithin_familyò prior information equation by virtue of their intra-layer 

or intra-unit status. Hence the need for ñvertical regularisationò at spatial locations 

where no layer overlap occurs may be diminished. 

Indiv_Family Regularisation 

GENREG allows the generation of a set of prior information equations expressing a 

difference or ratio relationship between all members of a particular parameter family 

and a single adjustable parameter which is not a member of any family, but which is 

nevertheless featured in the PEST control file. To activate this mode of prior 

information equation generation SPEC_TYPE must be set to ñindiv_familyò. Other 

keywords pertinent to ñindiv_familyò regularisation, and their allowed assignments, 

are depicted in the table below. 

Variable name (i.e. keyword) Role Possible values 

SPEC_TYPE sets regularisation specifications ñindiv_familyò for the present table 

REG_TYPE sets regularisation type ñdifferenceò or ñratioò for the 

present table 

DIFFRAT_VAL_TYPE sets source of difference or ratio ñuniformò or ñfileò 

VALUE sets difference or ratio if 

DIFFRAT_VAL_TYPE is set to 

ñuniformò 

a real number; this number must be 

greater than zero if REG_TYPE is 

set to ñratioò 

FAMILY_PREFIX identifies subset of parameters for 

inclusion in current parameter 

family 

a string of up to 8 characters 

PARAMETER identifies individual parameter to 

which all adjustable parameters in 

the identified family are linked by a 

prior information equation 

a string of up to 12 characters  

PILOT_POINTS_FILENAME_DR the name of a pilot points file from 

which differences or ratios are read 

if DIFFRAT_VAL_TYPE is set to 

ñfileò; also used for parameter 

locations if WEIGHT_OBS_DIST 

is set to ñyesò 

fifth column of this table must 

contain real numbers; these numbers 

must be greater than zero if 

REG_TYPE is set to ñratioò; second 

and third columns must contain pilot 

point eastings and northings 

REG_GROUP sets the regularisation group to 

which new prior information 

equations are assigned 

a string of up to 12 characters 

(probably beginning with ñregulò) 



GENREG  107 

 

 

WEIGHT_TYPE determines how weights are 

calculated 

must be ñuniformò for 

ñindiv_familyò regularisation 

WEIGHT weight assigned to all new prior 

information equations 

a non-negative real number 

WEIGHT_OBS_DIST determines weather weights are 

multiplied by a factor that is 

dependent on distance to nearest 

observation point 

ñyesò or ñnoò; assumed to be ñnoò if 

omitted 

OBS_DIST_A OBS_DIST_B  

OBS_DIST_C 

OBS_DIST_MINWT 

OBS_DIST_MAXWT 

real numbers used in observation-

distance weight factor calculation; 

required only if 

WEIGHT_OBS_DIST is set to 

ñyesò 

must be such that all calculated 

weights are non-negative 

WEIGHT_MULTIPLIER the factor by which all weights are 

multiplied for new prior information 

equations; optional 

a non-negative real number; 

assumed to be unity if omitted 

Keywords required when SPEC_TYPE is ñindiv_familyò. 

If SPEC_TYPE is set to ñindiv_familyò, REG_TYPE must be set to ñdifferenceò or 

ñratioò. In the former case both the identified individual PARAMETER and all 

members of the currently-identified parameter family that are neither tied nor fixed 

must be untransformed in the ñparameter dataò section of the PEST control file. In this 

case, GENREG generates a prior information equation of the following type for each 

adjustable member of the current parameter family:- 

pi_name 1.0 * par1 ï 1.0 * parameter  = difference obs_group weight  

Note that the member of the current parameter family is featured first in this equation 

and the individual parameter to which it is linked is featured second; the difference 

thus pertains to these two parameters in that order. 

Where REG_TYPE is set to ñratioò, GENREG insists that the individual 

PARAMETER be log transformed, and that all non-fixed and non-tied members of 

the identified parameter family also be log transformed in the PEST control file. In 

this case GENREG generates prior information equations of the type:- 

pi_name 1.0 * log(par1) ï 1.0 * log( parameter ) = log(ratio) obs_group weight  

If DIFFRAT_VAL_TYPE is set to ñuniformò then the same difference or ratio is used 

in each new prior information equation, this being supplied through the VALUE 

keyword. Alternatively if DIFFRAT_VAL_TYPE is set to ñfileò, the parameter-

specific difference or ratio is read from the fifth column of the pilot points file whose 

name is assigned to the PILOT_POINTS_FILENAME_DR keyword. In this file, pilot 

point names are linked to parameter names either by full name, or by parameter root 

name; that is, a pilot-point-to-parameter match is made if the name of a pilot point is 

the same as the name of a parameter, or has the same name as a parameter with the 

latterôs FAMILY_PREFIX removed. 

Whether or not DIFFRAT_VAL_TYPE is set to ñfileò, a 

PILOT_POINTS_FILENAME_DR keyword is required if WEIGHT_OBS_DIST is 



GENREG  108 

 

 

set to ñyesò. In this case weights are multiplied by a factor which is calculated as a 

function of the separation between a particular parameter and the closest observation 

point. Parameter coordinates are obtained from the second and third columns of the 

PILOT_POINTS_FILENAME_DR file, while observation coordinates are read from 

the second and third columns of an observation coordinates file whose name is 

assigned to the OBS_COORD_FILENAME keyword. In this case values must also be 

assigned to the OBS_DIST_A, OBS_DIST_B, OBS_DIST_C, OBS_DIST_MINWT 

and OBS_DIST_MAXWT keywords in the current REGSPEC block. Irrespective of 

the WEIGHT_OBS_DIST setting, WEIGHT_TYPE must be set to ñuniformò and a 

non-negative weight must be assigned to the WEIGHT keyword 

(WEIGHT_OBS_DIST functionality does not replace the uniform WEIGHT assigned 

in this manner; instead, it multiplies it by a distance-dependent factor.) The optional 

WEIGHT_MULTIPLIER keyword can be used to supply yet another weight 

multiplication factor. 

As for other REGSPEC blocks, the REG_GROUP keyword must be supplied with the 

name of the observation group to which new prior information equations are to be 

assigned. 

Uses of GENREG 

GENREG is used to assist in the construction of a complex PEST input dataset 

implementing regularised inversion. Because it presents so many options for the 

inclusion of regularisation constraints within a PEST control file, and because these 

options can be invoked (and varied) so easily, it allows the user to experiment with 

different regularisation schemes in order to find one that is most suitable for his/her 

particular model calibration problem. 

GENREG is best used in combination with PARM3D. Using the latter program a 

complex model domain comprised of many different model layers. and possibly many 

different hydrostratigraphic units, can be parameterised using pilot points in a 

straightforward manner.  

The use of many different parameters in the inversion process allows maximum 

information content to be extracted from a given calibration dataset. However this 

cannot be achieved without introducing some kind of regularisation device to the 

inverse problem. One such device is comprised of a set of constraints on parameter 

values which define a ñpreferred system conditionò from which deviation will be 

tolerated only to the extent necessary to achieve a user-specified level of model-to-

observation fit. Another device is the use or singular value decomposition to limit, in a 

more direct way, the number of degrees of freedom that can be represented in a 

calibrated parameter field. And, of course, these two methodologies can be combined 

through PESTôs unique and powerful SVD-assist functionality. 

GENREG was written to complement PESTôs high-end regularisation functionality by 

providing a modeller with the wherewithal to access that functionality as easily as 

possible. As such, it is envisaged that it will find widespread use, and that as a result 

of experience gained through such use, its capabilities will be expanded over time. 



GENREG  109 

 

 

See Also 

See also PPKFAC, FAC2REAL and PARM3D.  



GETMULARR  110 

 

 

GETMULARR  

Function of GETMULARR  

GETMULARR performs a function that is somewhat similar to that of the 

MANY2ONE utility in that it extracts individual arrays from MODFLOW and MT3D 

unformatted output files. However where the latter files are large because they hold 

many arrays, use of MANY2ONE becomes cumbersome as it presents the contents of 

each array to the user, asking him/her whether it is his/her desire that the array be 

stored. In contrast to this, GETMULARR stores arrays corresponding to simulation 

times and layers that are pre-set by the user. The times and layers for which arrays are 

recorded in a MODFLOW/MT3D output file can be acquired through the prior 

running of the ARRDET utility. 

Using GETMULARR  

Immediately upon commencement of execution, GETMULARR checks for the 

presence of a settings file settings.fig. If this file is not present in the directory from 

which it is run, GETMULARR ceases execution with an error message. It reads from 

this file the protocol for storage of formatted real arrays. GETMULARR needs to 

know this because it writes extracted arrays in formatted form. In particular, if the 

COLROW variable in settings.fig is set to ñyesò, then a number-of-columns, number-

of-rows header comprises the first line of any formatted real array file which 

GETMULARR writes. Alternatively, if it is set to ñnoò, this header is omitted. 

GETMULARRôs first prompt is:- 

 Enter name of grid specification file :  

If a ñfilenames fileò named files.fig is present in the directory from which it is run, and 

if this file contains the name of a grid specification file, then the name of the latter 

will be included in the above prompt as its default response. 

Next GETMULARR asks:- 

 Enter name of unformatted model - generated file:  

This file may have been written by MODFLOW (in which case it is a head or 

drawdown file) or by MT3DMS (in which case it is a concentration file). In each case 

the file is presumed to be a binary file in which pertinent arrays are stored layer by 

layer. Each layer is preceded by a header which provides (together with other data) the 

layer number and total simulation time to which the array pertains. 

GETMULARRôs next prompt is:- 

 Is this a MODFLOW or MT3D file?  [f/t]:  

Enter ñfò or ñtò as appropriate. (GETMULARR needs to know the file type as 

MODFLOW and MT3DMS employ slightly different protocols for array headers.) 

Then GETMULARR asks:- 



GETMULARR  111 

 

 

 Ente r name of array extraction file:  

The array extraction file must be prepared by the user prior to running GETMULARR. 

An example of an array extraction file follows. 

   

  300.0000            1     head1.ref  

#  300.0000           2     head2.ref  

 

  300.0000            3     head3.ref  

  300.0000            4    "he ad4.ref"  

  300.0000           15     head15.dat  

Part of an array extraction file. 

Any line of an array extraction file in which the first non-blank character is ñ#òis 

ignored. Blank lines are also ignored. All other lines must have three entries, the first 

of which is a simulation time (i.e. the MODFLOW/MT3DMS ñtotimò variable. The 

second entry on each line is a MODFLOW/MT3DMS layer number. The third entry is 

the name of a file. GETMULARR writes the array that it extracts for the nominated 

layer at the pertinent simulation time to the nominated file. It writes the file in ASCII 

format (with or without a number-of-columns, number-of-rows header as described 

above). 

If GETMULARR cannot find an array for a time and layer specified in an array 

extraction file, it ceases execution with an appropriate error message. 

It is important to note that times and layers supplied in the array extraction file must 

be provided in the same order as that in which arrays are stored in the 

MODFLOW/MT3D unformatted output file. This is in order of increasing time and 

layer number. 

Uses of GETMULARR 

An array extraction file suitable for the use of GETMULARR can be readily built 

from an ARRDET output file.  

GETMULARR can be useful where multiple models are being calibrated 

simultaneously, with the first being a steady state model and the second being a 

transient version of the same model, and where outputs from the former provide initial 

conditions for the latter. Arrays stored at the end of unformatted heads and 

concentration files produced by the former model can be re-written to real arrays 

comprising part of the input dataset for the second model. The MOD2ARRAY utility 

can assist in preparation of such a dataset. 

See Also 

See also ARRDET, GETMULARR1, MOD2ARRAY.  



GETMULARR1  112 

 

 

GETMULARR1  

Function of GETMULARR1  

GETMULARR1 reads an unformatted MODFLOW or MT3D heads or concentration 

output file. It writes all arrays found in that file corresponding to a user-specified 

simulation time to another unformatted file in identical format. The new file thus 

emulates a MODFLOW/MT3D heads/concentration output file in which heads or 

concentration arrays were recorded at only one output time. 

Using GETMULARR1  

GETMULARR1ôs first prompt is:- 

 Enter name of g rid specification file :  

If a ñfilenames fileò named files.fig is present in the directory from which 

GETMULARR1 is run, and if this file contains the name of a grid specification file, 

then the name of the latter will be included in the above prompt as its default 

response. 

Next GETMULARR1 asks:- 

 Enter name of unformatted model - generated file:  

This file may have been written by MODFLOW (in which case it is a head or 

drawdown file) or by MT3DMS (in which case it is a concentration file). In each case 

the file is presumed to be a binary file in which pertinent arrays are stored layer by 

layer. Each layer is preceded by a header which provides (together with other data) the 

layer number and total simulation time to which the array pertains. 

GETMULARR1ôs next prompt is:- 

 Is this a MODFLOW or MT3D file?  [f/t]:  

Enter ñfò or ñtò as appropriate. (GETMULARR1 needs to know the file type as 

MODFLOW and MT3DMS employ slightly different protocols for array headers.) 

Then GETMULARR1 asks:- 

 Enter simulation time for  whi ch to extract arrays:  

If you are unsure what simulation times are represented in a MODFLOW/MT3D 

unformatted output file, use the ARRDET utility; see the ñtotal_timeò column in this 

file. 

Finally GETMULARR1 asks:- 

 Enter name for unformatted output file:  

Provide the name of the pseudo-MODFLOW/MT3D unformatted output file to which 

you would like the extracted arrays written. 



GETMULARR1  113 

 

 

GETMULARR1 then reads the nominated MODFLOW/MT3D unformatted output 

file and writes one of reduced size, containing only arrays pertaining to the nominated 

simulation time. 

Uses of GETMULARR1 

Sometimes it is convenient to have MODFLOW/MT3D output arrays pertaining only 

to a time of interest stored in MODFLOW/MT3D unformatted output files. This can 

be particularly useful where such files are used for obtaining initial heads or 

concentrations for a following simulation. The arrays of interest may lie at the end of a 

sequence of other arrays in the existing file. By placing these arrays at the front of a 

new unformatted file, MODFLOW or MT3D can be directed to read the arrays from 

that file when undertaking its next simulation. 

See Also 

See also GETMULARR, ARRDET. 

 

 



GRID2ARC  114 

 

 

GRID2ARC 

Function of GRID2ARC 

Program GRID2ARC produces a pair of ARCINFO ñgenerateò files based on a user-

defined portion of the finite difference grid. These files can be used to reconstruct the 

model grid within ARCINFO, with a polygon defined for each cell. 

Using GRID2ARC 

A settings file settings.fig  must be present in the directory from which 

GRID2ARC is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

GRID2ARC commences execution with the prompt: 

 Enter name of grid specification file:  

Type in the name of the grid specification file. Alternatively, if a filename file 

(files.fig ) is present in your current directory, GRID2ARC may present you with 

a default grid specification filename (as read from the filename file); in this case press 

<Enter> to accept the default or type in the correct name. GRID2ARC reads the grid 

specification file in order to obtain the geographical information which it requires for 

construction of the ARCINFO ñgenerateò files. 

Next GRID2ARC prompts: 

 Enter name of window integer array file:  

to which you should respond with the name of an appropriate MODFLOW/MT3D-

compatible integer array file (keeping in mind the naming convention for formatted 

and unformatted integer array files as documented in Section 2.10 of Part A of this 

manual). The ñgenerateò files which GRID2ARC produces only record cells for which 

array elements within this integer array are non-zero. In most cases the window 

integer array will be a layer activity array. 

Next GRID2ARC prompts for the names of the ñlineò and ñpointsò files which it must 

write: 

 Enter name for output "line" file:  

 Enter name for output "points" file:  

Part of a ñlineò file is shown below: 



GRID2ARC  115 

 

 

Fragment of a ñlineò file written by GRID2ARC. 

Within a GRID2ARC-generated ñlineò file each cell of the finite-difference grid is 

represented by 7 lines of data. The first line contains the cell label; this is the cell 

number as obtained by counting cells row by row from the top left corner of the finite-

difference grid. Next follow the cell corner coordinates, easting then northing; the first 

set of coordinates is repeated for polygon closure. Finally the ñendò string signals that 

all information pertaining to a particular polygon has been supplied. 

Part of a GRID2ARC-generated ñpointsò file is shown below: 

Fragment of a ñpointsò file written by GRID2ARC. 

Each line of a ñpointsò file pertains to a single cell of the finite-difference grid. It 

contains three entries, viz. a cellôs number (see above) and the easting and northing of 

its centroid. 

Collectively the ñlineò and ñpointsò files allow ARCINFO to generate a set of 

polygons, each polygon representing one cell of the finite difference grid. Within 

ARCINFO each of these polygons can be assigned attributes on the basis of other 

geographical information covering the same model area.  

      10 

      410824.094,      7260109.351  

      411026.771,      7259888.168  

      410805.588,      7259685.491  

      410602.910,      7259906.674  

      410824.094,      7260109.351  

 end  

      11 

      411026.771,      7259888.168  

      411229.448,      7259666.985  

      411008.265,      7259464.308  

      410805.587,      7259685.491  

      411026.771,      7259888.168  

 end  

      12 

      411229.448,      7259666.985  

      411432.125,      7259445.802  

      411210.941,      7259243.125  

      411008.264,      7259464.308  

      411229.448,      7259666.985  

     10,       410814.841,      7259897.421  

     11,       411017.518,      7259676.238  

     12,       411220.195,      7259455.055  

     13,       411422.872,      7259233.872  

     23,       413449.643,      7257022.040  

     24,       413 652.319,      7256800.856  

     25,       413854.997,      7256579.673  

     26,       414057.673,      7256358.490  

     27,       414260.351,      7256137.307  

     28,       414463.028,      7255916.124  

     29,       414665.705,      7255694.940  

     42,       410593.657,      7259694.744  

     43,       410796.334,      7259473.561  

     44,       410999.011,      7259252.378  

     45,       411201.688,      7259031.194  



GRID2ARC  116 

 

 

Uses of GRID2ARC 

ñLineò and ñpointsò files produced by GRID2ARC can be imported into ARCINFO. 

Once imported, the active part of a model layer can be represented within ARCINFO 

as a set of polygons, one for each cell. This representation allows ARCINFO to 

undertake a large number of important pre- and postprocessing operations pertaining 

to a particular model. For example a data column containing integers or real numbers 

can be added to the cell number table, integer or real values within this column being 

assigned on the basis of spatial relationships between grid cells and components of 

other coverages pertaining to the same area. A table so constructed can then be 

exported from ARCINFO as an ASCII file and converted to a three-column integer or 

real array table file using program TABCONV. The table can then be reformatted as a 

real or integer array, ready for model usage, by program TAB2INT or TAB2REAL. 

Conversely an existing real or integer array can be imported into ARCINFO using 

REAL2MIF or INT2MIF to generate a real or integer array table (use the ñMIDò file 

written by either of these programs) followed by TABCONV to undertake the 

conversion from the use of row and column number format to cell number format. 

More sophisticated analysis and preprocessing of model data can also be carried out 

within ARCINFO. For example model cell polygons can be intersected with soil and 

land use polygons to determine the area of each soil type/land use combination within 

each cell. This information can then be combined with the leaching fraction pertinent 

to each soil type/land use combination to calculate a recharge array for a model. 

See Also 

See also INT2MIF, REAL2MIF, TAB2INT, TAB2REAL, TABCONV. 



GRID2BLN  117 

 

 

GRID2BLN  

Function of GRID2BLN 

Program GRID2BLN produces a SURFER blanking (ie. ñXYLineò) file of part or all 

of the finite difference grid. This file can be used by SURFER to draw a picture of the 

model grid to overlay on basemaps and/or contour plots. 

Using GRID2BLN 

A settings file settings.fig  must be present in the directory from which 

GRID2BLN is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

On commencement of execution GRID2BLN prompts: 

 Enter name of grid specification file:  

Type in the name of a grid specification file. Alternatively, if a filename file 

(files.fig ) is present in the current directory, GRID2BLN may provide a default 

filename with the above prompt; press <Enter> to accept the default or type in the 

required name. GRID2BLN reads from the grid specification file the geographical 

information it requires in order to construct a SURFER blanking file. 

GRID2BLN next prompts: 

 Enter name of window integer array file:  

Here you should supply the name of a formatted or unformatted file holding a 

MODFLOW/MT3D-compatible integer array (see Section 2.10 of Part A of this 

manual). For the purposes of constructing the SURFER blanking file, cells with non-

zero integer array elements are deemed as ñactiveò, zero-valued cells being considered 

ñinactiveò. Thus if a MODFLOW layer activity array is used as a window integer 

array, SURFER will draw a map of the active part of the finite-difference grid (for that 

layer), omitting all inactive cells. 

Next GRID2BLN asks the user to supply a name for the blanking file which it is about 

to write: 

 Ent er name of SURFER blanking output file:  

Here enter a filename of your choice. However it is recommended that you provide 

this filename with an extension of ñBLNò so that SURFER will recognise it as a 

blanking file. 

It is important to note that SURFER has two uses for blanking files. They can be used 

simply to draw a picture, or they can be used to actually blank part of a contouring 

grid. While blanking files produced by GRID2BLN are suitable for drawing the finite-



GRID2BLN  118 

 

 

difference grid, they are not suitable for blanking the SURFER contouring grid as the 

elements represented in a GRID2BLN-generated blanking file are not polygons; they 

are simply line segments. To produce a file suitable for blanking, use program 

ZONE2BLN. 

Uses of GRID2BLN 

GRID2BLN can be used in preparing diagrams of the model grid in which the latter is 

plotted in real-world coordinates. When superimposed on other maps of a study area, 

a clear picture emerges of the spatial relationships between the groundwater model 

and cadastral, topographic, geological, and other data. 

See Also 

See also programs GRID2DXF and  ZONE2BLN. 



GRID2DXF  119 

 

 

GRID2DXF 

Function of GRID2DXF 

Program GRID2DXF writes a DXF file of all or part of the finite-difference grid. This 

file can be used by CAD, plotting, contouring and GIS software to draw a picture of 

the finite difference grid, superimposed on other geographical information. 

Using GRID2DXF 

A settings file settings.fig  must be present in the directory from which 

GRID2DXF is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

On commencement of execution GRID2DXF prompts: 

 Enter name of grid specification file:  

Type in the name of a grid specification file. Alternatively, if a filename file 

files.fig  is present in the current directory, GRID2DXF may include a default 

grid specification filename with the above prompt; press <Enter> to accept the default 

or type in the correct name. GRID2DXF reads from the grid specification file the 

geographical information it requires in order to represent the grid in DXF format. 

GRID2DXF next prompts: 

 Enter name of window integer array file:  

Here you should supply the name of a formatted or unformatted file holding a 

MODFLOW/MT3D-compatible integer array (see Section 2.10 of Part A of this 

manual). For the purposes of constructing its DXF output file, cells with non-zero 

integer array element are deemed ñactiveò, zero-valued cells being considered 

ñinactiveò. Thus if a MODFLOW layer activity array is used as a window integer 

array, GRID2DXF will write a DXF file in which only the active cells of the finite-

difference grid (for that layer) are represented. 

GRID2DXFôs next prompt is: 

 Enter name for DXF output file:  

Here supply a filename of your choice; however it is a good idea to provide a filename 

extension of ñDXFò so that the file is easily recognised as a DXF file. 

Uses of GRID2DXF 

GRID2DXF is used in preparing maps which include the model grid. When the model 

grid is superimposed on other maps of a study area, a clear picture emerges of the 



GRID2DXF  120 

 

 

spatial relationships between the groundwater model and cadastral, topographic, 

geological, and other data. 

See Also 

See also GRID2BLN, ZONE2DXF. 



GRID2PT  121 

 

 

GRID2PT 

Function of GRID2PT 

Program GRID2PT tabulates the coordinates of the cell centres of the ñactiveò part of 

the finite-difference grid. The ñactiveò part of the grid is defined by non-zero values 

within a user-supplied window integer array. If certain GRID2PT options are chosen, 

GRID2PT can produce a bore coordinates file in which each ñboreò is an active grid 

cell centre. This can then be used with other Groundwater Data Utilities to accomplish 

such tasks as determining model-calculated results at the centres of certain user-

specified cells. 

Using GRID2PT 

A settings file settings.fig  must be present in the directory from which 

GRID2PT is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

Upon commencement of execution GRID2PT prompts: 

 Enter name of grid specification file:  

Type in the name of the grid specification file. Alternatively, if a filename file 

(files.fig ) is present within the current directory, GRID2PT may include a 

default filename with the above prompt; press <Enter> to accept the default or type in 

the name of the grid specification file that you would prefer to use. GRID2PT reads 

from the grid specification file the geographical information which it requires in order 

to determine the centroid coordinates of grid cells. 

GRID2PT then prompts: 

 Enter name of window integer array file:  

Here supply the name of a formatted or unformatted file holding a 

MODFLOW/MT3D-compatible integer array (see Section 2.10 of Part A of this 

manual). Cells with an integer value of zero within this array are considered to be 

ñinactiveò; the coordinates of such ñinactiveò cells are not represented in the 

GRID2PT output file. 

GRID2PTôs next prompt is: 

 Enter name for output file:  

Here supply a filename of your choice to which GRID2PT will write model grid cell 

centre coordinates. GRID2PT then asks the user for his/her wishes regarding 

presentation of data on this output file. First: 

 In GRID2PT output file: -  



GRID2PT  122 

 

 

 Use row and column numbers or cell numbers?  [r/c]  

GRID2PT can use either of two methods to identify a cell. The first is the traditional 

method of row and column numbers (using the MODFLOW convention whereby the 

cell with a row and column number of 1 occupies the top left corner of the grid). The 

second method characterises each cell by a single number instead of two; this single 

number is referred to as the ñcell numberò. A cellôs ñcell numberò is obtained by 

counting cells row by row starting at the top left corner of the grid. If you wish to use 

GRID2PT to construct a pseudo bore coordinates file you should select the cell 

number option for cell identification, this single number acting as the bore identifier in 

the pseudo bore coordinates file. 

Next GRID2PT asks: 

 Include dummy layer number column?  [y/n]  

If you respond with ñyò GRID2PT will add an extra column to its output file. This 

column will contain the number that you supply in response to the following 

GRID2PT prompt: 

 Enter dummy layer number:  

Using this option together with the cell number option allows GRID2PT to generate a 

valid bore coordinates file. The latter can then be used in conjunction with programs 

such as MOD2OBS in order to retrieve model-generated heads at specific cell centres. 

The following example shows an extract from a file written by GRID2PT in which the 

cell number and dummy layer number options were selected. The dummy layer 

number was entered as 1. 

 

        2724       434629.899      7248389.057    1  

        2725       435023.905      7248696.887    1  

        2726       435417.910      7249004.718     1 

        2727       435811.914      7249312.549    1  

        2728       436205.920      7249620.379    1  

        2729       436599.926      7249928.210    1  

        2730       436993.932      7250236.042    1  

        2731       437387.936      7250543 .872    1  

        2732       437781.942      7250851.703    1  

        2733       438175.948      7251159.534    1  

        2734       438569.953      7251467.364    1  

        2735       438963.957      7251775.195    1  

        2736       439357.963      725 2083.026    1  

        2737       439751.969      7252390.857    1  

        2738       440145.975      7252698.687    1  

        2739       440539.979      7253006.518    1  

        2740       440933.985      7253314.349    1  

        2741       441327.990      7253622.179    1  

        2742       441721.996      7253930.010    1  

        2743       442116.000      7254237.841    1  

        2744       442510.006      7254545.671    1  

        2745       442904.012      7254853.502    1  

        2746       443298.016      7255161.333    1  



GRID2PT  123 

 

 

Extract from a GRID2PT output file.  

Uses of GRID2PT 

The primary use of GRID2PT is to produce a bore coordinates file based on certain 

user-identified cells. Target cells can be selected using a graphical MODFLOW 

preprocessor, a GIS, or any software from which an integer array can be generated and 

exported; all elements in this array should be zero except for the elements 

corresponding to the cells of interest. 

Once a bore coordinates file has been constructed based on the selected cells, 

programs within the Groundwater Data Utilities can be used to process the cells as if 

they were bores. Thus MOD2OBS can be used to determine heads at the identified 

cells at one or more times during a model run. A bore sample file, based on a model 

run, can be created for the cell centres using program MOD2SMP. In the latter case 

program SMP2HYD can then be used to plot bore hydrographs, and program 

SMP2INFO can be used to temporally interpolate model-calculated quantities for 

these cells to times that do not correspond to model output times. 

See Also 

See also PTINGRID. 



INT2MIF  124 

 

 

INT2MIF  

Function of INT2MIF  

INT2MIF generates a MAPINFO-compatible MIF/MID file pair holding the 

geographical and array information contained in a MODFLOW/MT3D-compatible 

integer array. The files generated by INT2MIF can be used by MAPINFO (and other 

geographical information systems) to import a model integer array for GIS-based 

model pre/postprocessing and display. 

Using INT2MIF  

A settings file settings.fig  must be present in the directory from which 

INT2MIF is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

On commencement of execution INT2MIF prompts: 

 Enter name of grid specification fil e:  

Type in the name of the grid specification file pertinent to the current model. Note that 

if a filename file (files.fig ) resides in the directory from which INT2MIF is run, 

the name of a default grid specification file may appear as part of the above prompt; in 

this case press <Enter> to accept the default or enter an alternative filename. 

INT2MIF reads two integer arrays. First it asks for a ñdataò integer array. This is the 

integer array whose contents are to be written to the MIF and MID files for subsequent 

uploading into a GIS. INT2MIF prompts: 

 Enter name of data integer array:  

to which you should respond with an appropriate filename, taking note of the 

convention for integer array filename extensions employed by the Groundwater Data 

Utilities; see Section 2.10 of Part A of this manual. Next INT2MIF prompts: 

 Enter name of window integer array file:  

The window integer array file acts as a mask or ñcookie-cutterò over the data integer 

array. Only cells of the latter array whose corresponding cells in the former array are 

non-zero-valued appear in the MIF/MID files written by INT2MIF. Note that the data 

and window integer array files can be the same. 

INT2MIF next requests the names of the files to which it should write the 

geographical and array information respectively pertaining to the active window (as 

defined by the window integer array) of the data integer array. INT2MIF prompts: 

 Enter name for output "MIF" file:  

 Enter name for output "MID" file:  



INT2MIF  125 

 

 

Then it asks: 

 Enter AMG zone number of model area  [47 -  58]:  

in response to which the Australian Map Grid zone number of the current study area 

should be entered. (If you do not live in Australia provide a zone number within the 

range indicated. Then, after INT2MIF has finished execution, you should replace the 

third line of the MIF file generated by INT2MIF with more appropriate Coordsys  

information obtained from file MAPINFOW.PRJ supplied with MAPINFO.) 

INT2MIF then calculates the coordinates of the corners of each ñactiveò cell and 

transfers them in appropriate format, to the MIF file whose name was supplied above. 

The contents of the ñactiveò cells of the data integer array are written to the user-

nominated MID file. 

Uses of INT2MIF 

INT2MIF provides the means whereby integer array data can be imported into a 

geographical information system (GIS). In a GIS grid cells can be displayed as 

ñregionsò or ñpolygonsò, with attributes assigned to each such cell. These attributes, 

uploaded through the MID file generated by INT2MIF, are the row and column 

numbers of each ñactiveò cell, and the integer array value for each such cell. The latter 

can be schematised (for example as a thematic map) and overlain on other 

geographical information and/or images covering the study area. Within the GIS 

integer array values can be edited with reference to other information layers; row and 

column numbers should not be edited. The modified integer array can then be 

downloaded as an integer array table, and rewritten in integer array format using 

program TAB2INT. 

See Also 

See also REAL2MIF, TAB2INT, TAB2REAL. 



INT2REAL  126 

 

 

INT2REAL  

Function of INT2REAL  

INT2EAL constructs or modifies a MODFLOW/MT3D-compatible real array on the 

basis of a MODFLOW/MT3D-compatible integer array. Real array elements are 

assigned values on the basis of a user-supplied correspondence between integers as 

represented in the integer array, and real numbers to be written to the real array. 

Using INT2REAL  

A settings file settings.fig  must be present in the directory from which 

INT2REAL is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

On commencement of execution, INT2REAL prompts: 

 Enter name of grid specification file:  

Supply an appropriate filename. If a default name for the grid specification file 

appears with the above prompt (INT2REAL having obtained the default filename 

from a filename file residing in the current directory) press <Enter> to accept it or 

enter the more appropriate filename as described above. 

INT2REAL next prompts the user for the name of an integer array file upon which to 

base its construction or modification of a model-compatible real array: 

 Enter name of integer array file:  

Supply an appropriate filename, keeping in mind the naming conventions for integer 

arrays outlined in Section 2.10 of Part A of this manual. 

INT2REAL can either modify a real array or create one. In the former case it must 

read an existing real array before it can perform the modification. It prompts: 

 Modify an existing real ar ray or create a new one?  [m/c]:  

Enter ñmò or ñcò as appropriate. If you enter ñmò, INT2REAL next prompts for the file 

which holds the real array to be modified: 

 Enter name of file holding existing real array:  

to which you should respond with an appropriate filename, keeping in mind the 

naming convention for real array files outlined in Section 2.17 of Part A of this 

manual. The real array is then read by INT2REAL and stored within memory. 

INT2REAL next examines the integer array which it has previously read, making an 

internal list of all integers present in that array. If the option to create a new real array 

was selected then a real number must be supplied corresponding to every integer 



INT2REAL  127 

 

 

occurring in this list. Alternatively, if an existing real array is to be modified, real 

numbers need to be provided for only some of these integers. In the former case 

INT2REAL assigns a value to every cell in the new real array on the basis of the 

integer found in the corresponding cell of the integer array and on the user-supplied 

linkages between integers and real numbers. In the latter case, the integer-real linkage 

is used to provide new values for real array cells only where the user has actually 

provided a real number corresponding to a given integer. 

The correspondence between integers and real numbers can be supplied to INT2REAL 

from the terminal in response to screen prompts, or it can be supplied through a file. 

So INT2REAL next asks how these correspondences are to be entered: 

 Enter integer - real correspondence manually or using a file? [m/f]:  

If you enter ñf ò, INT2REAL requests the name of the file in which the 

correspondences are recorded: 

 Enter name of integer - real correspondence file:  

An integer-real correspondence file is shown below. 

An integer-real correspondence file. 

An integer-real correspondence file is comprised of two columns of data, the first 

column holding integers and the second column holding real numbers. If a real array is 

to be created by INT2REAL, every integer cited in the integer array must also be cited 

in the integer-real correspondence file. If an existing real array is to be modified, only 

some of the integers found in the integer array need to be listed in the integer-real 

correspondence file. Note that the same real number can correspond to more than one 

integer. 

If you inform INT2REAL that integer-real correspondences are to be supplied from 

the terminal, then it does not prompt for the name of an integer-real correspondence 

file. Instead it presents the user with each of the integers that it found in the integer 

array and requests that he/she supply a corresponding real number. If a real array is 

being created (rather than modified) a real number must be supplied for every integer. 

However if a real array is being modified, you may press the <Enter> key in response 

to INT2REALôs request for a real number corresponding to a certain integer, thus 

signalling that real array elements whose row and column numbers are identical to 

those containing that integer in the integer array are not to be modified. INT2REALôs 

prompts are: 

 The following integers have been detected in the integer array: -  

 Enter corresponding real numbers.  

 Press <ENTER> if integer effects no change to existing real a rray.  

   Enter real number corresponding to integer 0:  

0  3.445  

1  3.6e - 3 

2  45.54  

3  5.445  

4  9.586  

5  545.6  



INT2REAL  128 

 

 

   Enter real number corresponding to integer 1:  
   Enter real number corresponding to integer 2:  
   etc.  

Once integer-real correspondences have been supplied, either from a file or from the 

terminal, INT2REAL prompts for the name of the file to which it should write its 

created or modified real array: 

 Enter name for output real array file:  

in response to which an appropriate filename should be supplied, keeping in mind the 

naming conventions for real arrays outlined in Section 2.17 of Part A of this manual. 

Uses of INT2REAL 

INT2REAL provides the means whereby aquifer property, recharge, or other data can 

be supplied to a model on the basis of a zonation pattern established over the model 

area. The zonation may be derived from geological, land use, etc. data. It may have 

been created within a model preprocessor or within a GIS such as MAPINFO; in 

either case the zonation pattern is supplied to INT2REAL in the form of an integer 

array. 

If a zonation-defining integer array is based on model area land use, it may serve as a 

basis for recharge array construction. Different recharge arrays can be built for 

different model stress periods and different projected land-use scenarios, all on the 

basis of a single integer array, a different integer-real correspondence file being 

employed for each occasion. Such real arrays can be created ñfrom scratchò or 

modified (using the INT2REAL ñmodifyò option) from a regional recharge array as 

different land-use scenarios are tested. 

Program INT2REAL can also form a valuable component of a ñcomposite modelò for 

which parameters are estimated using PEST. See Section 4.14 of Part A of this 

manual for details. 

See Also 

See also REAL2INT. 



LAYDIFF  129 

 

 

LAYDIFF  

Function of LAYDIFF  

LAYDIFF reads data from a bore sample file. In the following discussion it will be 

assumed that head data is read; however LAYDIFFôs operations are not restricted to 

only data of this type. It also reads bore eastings, northings and layer numbers from a 

bore coordinates file. For a particular user-supplied day, LAYDIFF evaluates head 

differences between model layers at locations where this is possible by subtracting the 

head in one layer from that in another layer. This calculation can only be performed if 

two conditions are met. The first condition is that the bores which tap the two 

different layers are separated by a horizontal distance that is not very large (this being 

defined by a user-supplied threshold). The second condition is that at least one sample 

from each of the bores upon which head difference calculation is based was taken 

within a user-supplied time window about the specified time at which head difference 

calculations are required. Where borehole head samples bracket this specified time, 

linear interpolation between those samples to the specified ñhead differenceò reference 

time is undertaken by LAYDIFF. 

Using LAYDIFF  

Like many other members of the Groundwater Data Utility Suite, LAYDIFF requires 

the presence of a settings file settings.fig  in the directory from which it is run. 

The contents of this file inform LAYDIFF of the protocol to use for representation of 

dates. An optional filename file (files.fig ), informing LAYDIFF of the names of 

a default bore coordinates file and a default bore sample file pertaining to its current 

task, may also be present within the current working directory. 

LAYDIFF commences execution with the prompt:- 

Enter name of bore coordinates file:  

Supply the name of the appropriate file (or accept the default provided by LAYDIFF 

by simply pressing the <Enter> key). Note that the fourth column of this file must 

contain layer numbers. Note also that a subset of bores provided in this file can be 

selected for processing using a listing file whose name is provided in response to 

LAYDIFFôs second prompt:- 

Enter name of bore listing file:  

The bore listing file can be the same as the bore coordinates file if desired. 

LAYDIFF prompts for the name of the bore sample file in which borehole 

measurements are housed:- 

Enter name of bore sample fil e:  



LAYDIFF  130 

 

 

As usual, ensure the integrity of this file by checking it with SMPCHEK before 

supplying it to LAYDIFF. 

LAYDIFF next prompts for the date and time at which inter-layer head differences are 

to be calculated:- 

Enter reference date [mm/dd/yyyy]:  

Enter refe rence time [hh:mm:ss]:  

Where necessary, LAYDIFF performs linear interpolation of measurements residing 

in the bore sample file to this exact date and time. However no temporal interpolation 

will take place (and hence data pertaining to the bore will be ignored) if the time 

pertaining to the nearest sample for that bore is outside of a given time window, the 

width of which is specified in response to the prompt:- 

Enter maximum days to reference date (fractional if necessary):  

Note that if the reference date/time is not subtended by two different samples, no 

linear interpolation can take place to that date/time. In this case LAYDIFF uses the 

head at the nearest sample time as the head at the reference date and time, provided 

the time difference between the measurement and reference times does not exceed the 

above time difference threshold. 

As well as a temporal threshold, a distance threshold is also required for interlayer 

head difference calculation. For any bore situated within a particular model layer, 

LAY DIFF finds the closest bore in all underlying layers in order to evaluate interlayer 

head differences between measurements in the pertinent bores. However unless the 

horizontal distance between the upper layer bore and the lower layer bore is less than a 

given threshold, no inter-layer head difference calculation takes place between those 

bores. This distance threshold is supplied to LAYDIFF following the prompt:- 

Enter exclusion distance:  

Once this question has been answered, LAYDIFF prompts for the name of the file to 

which to write its calculated head differences. It then proceeds to write this file. 

Finally LAYDIFF prompts:- 

Generate an instruction file to read output file? [y/n]:  

Type ñyò or ñnò as appropriate. If you type ñyò, LAYDIFF will write a file (named 

according to the userôs choice) containing an instruction set to read inter-layer head 

differences written to the LAYDIFF output file. In this instruction file, observations 

are named according to the convention ñbore1-bore2ò where ñbore1ò is the name of 

the upper layer bore and ñbore2ò is the name of the lower layer bore involved in each 

head difference calculation. LAYDIFF does not observe the 12 character limit on 

PEST observation names in formulating the above observation name. However if any 

observation name exceeds 12 characters in length it warns the user of this, leaving it 

up to him/her to then shorten its name in the most appropriate way. 

Note the following aspects of LAYDIFFôs calculations:- 



LAYDIFF  131 

 

 

1. LAYDIFF attempts to use every bore in the listing file as a reference point for 

calculation of interlayer head differences. However if, for a particular bore, 

there is no measurement close enough to the reference date and time (as 

defined above), that bore is ignored and no head differences are calculated at 

that site. 

2. For each bore, head differences are calculated only to underlying layers (ie. to 

layers with greater layer number). Multiple differences, pertaining to multiple 

underlying layers, are calculated where bore locations permit. 

3. If, for any upper layer bore, there is no bore in any underlying layer which is 

closer to that bore than the user-supplied exclusion distance, the upper layer 

bore is ignored. 

Uses of LAYDIFF  

LAYDIFF can be used on its own or as part of a model calibration exercise. The 

inclusion of inter-layer head differences in the calibration dataset can often be of great 

use in the estimation of vertical conductivities and/or inter-layer conductances. 

LAYDIFF allows head differences to be calculated both for field data and for model-

generated datasets; in the latter case MOD2SMP should be run prior to LAYDIFF, 

this providing model-generated heads in bore sample file format. If field data resident 

in a measurement bore sample file are then interpolated to this model-generated bore 

sample file (using SMP2SMP), equivalent field and model-generated bore sample 

files will be available. LAYDIFF can then run on each of these; head differences 

calculated from the field bore sample file can be transferred to the PEST control file 

as the ñobservedò set of head differences, while those generated from the model bore 

sample file can be used as the model-generated counterpart to these. These latter 

differences can, of course, be read using the LAYDIFF-generated instruction set. 

See Also 

See also MOD2SMP, SMP2SMP. 

 



LOGARRAY  132 

 

 

LOGARRAY  

Function of LOGARRAY  

LOGARRAY reads a real array. It evaluates the log (to base 10) of all elements in that 

array. It then writes another array. This can be useful for display purposes, for 

example when contouring hydraulic properties such as hydraulic conductivity. If log 

transformation is not undertaken before contouring, details of spatial variation in the 

hydraulic property in areas of low property value may be lost. 

Using LOGARRAY 

Like many of the programs of the Groundwater Data Utilities, LOGARRAY 

commences execution by reading a grid specification file for the current model, from 

which it obtains the row and column dimensions of the finite difference grid. Note that 

a settings file (named setting.fig) must reside in the directory from which 

LOGARRAY is run.  

LOGARRAY next  prompts for the name of a real array file. After reading the array it 

prompts:- 

Enter inactive threshold for array (press <ENTER> if none):  

If the absolute value of any array element is above this threshold, that array element is 

left untouched by LOGARRAY. Otherwise its log is taken. However if the element is 

zero or negative (and its absolute value is below the threshold) an error condition is 

reported. 

Finally LOGARRAY prompts for the name of an output file, to which it writes the 

log-transformed real array. 

Uses of LOGARRAY 

As mentioned above, LOGARRAY can be useful in re-writing arrays prior to 

contouring for display purposes. 

See Also 

See also REAL2SRF.  



MANY2ONE  133 

 

 

MANY2ONE  

Function of MANY2ONE 

MANY2ONE reads an unformatted MODFLOW or MT3D output file containing a 

series of two-dimensional arrays, each array pertaining to a different layer, time and, 

possibly, transport step. MODFLOW writes such lengthy, unformatted files to record 

head, drawdown, subsidence, etc data, while MT3D records its calculated 

concentrations to such files. MANY2ONE presents the user with the contents of each 

array (as read from MODFLOW or MT3D supplied headers) and gives him/her the 

option of storing a particular array in a separate file in either formatted or unformatted 

form. 

Using MANY2ONE 

A settings file settings.fig  must be present in the directory from which 

MANY2ONE is run. Among other things, this file specifies whether a ñnumber of 

columns, number of rowsò header is used in formatted integer and real array files. 

Upon commencement of execution MANY2ONE prompts: 

 Enter name of MODFLOW/MT3D unformatted output file:  

to which you should respond with an appropriate filename. MANY2ONE next needs 

to know whether the multiple-array file has been generated by MODFLOW or MT3D. 

The distinction is necessary as these programs write different unformatted array 

headers to their output files; MANY2ONE must read these headers so that it can 

convey the information contained in them to the user. Hence it prompts: 

 Is this a MODFLOW or MT3D output file?  [f/t]:  

to which you should reply with ñf ò or ñt ò as appropriate. 

MANY2ONE then reads each array in the MODFLOW or MT3D output file, writing 

a description of the contents of the array to the screen: 

 MODFLOW head array for layer 1 ----- > 

  Stress period                              = 1  

  Time step                                  = 1  

  Elapsed time since start of stress period  = 30.00000  

  Elapsed time since start of simulation     = 30.00000  

  Store array  in separate file?  [y/n]:  

Indicate using the ñyò or ñnò keys whether MANY2ONE should store the array in a 

separate file or not. If ñyò, MANY2ONE prompts: 

 Enter name for real array file:  



MANY2ONE  134 

 

 

to which an appropriate filename should be entered, keeping in mind the naming 

convention for real arrays outlined in Section 2.17 of Part A of this manual. 

If the array is stored in unformatted form (ie. if an extension of ñREUò is supplied with 

the filename or unformatted storage is explicitly requested), MANY2ONE records the 

array header information in the new, unformatted file. This allows the file to serve as 

an input file for MODBORE or MT3BORE from the PEST MODFLOW/MT3D 

Utilities suite which can then interpolate its contents to user-specified boresites. 

Uses of MANY2ONE 

Arrays extracted from large MODFLOW or MT3D output files can be written in 

formatted form for user inspection, either on the screen or after printing. Contour 

maps can be produced from individual arrays using, for example, program 

REAL2SRF. Such arrays can also serve as inputs to program SECTION which is able 

to plot transects of arbitrary complexity through a model grid. An array extracted from 

a MODFLOW or MT3D unformatted output file can be re-used as an initial 

conditions array, zoned to form an integer array, imported into a GIS, imported into a 

model graphical preprocessor, etc. Hence MANY2ONE serves as an important link 

between model-generated data and many of the utilities documented in this manual. 

 



MKMHOBS  135 

 

 

MKMHOBS  

Function of MKMHOBS  

The role of MKMHOBS is not dissimilar to that of MOD2OBS in that it facilitates 

construction of a PEST input dataset where measured data is supplied in bore sample 

file format. MKMHOBS writes a MODFLOW heads observation process input file, 

and adds the name of this file to an existing MODFLOW name file. It also adds the 

name of the data file to which simulated equivalent heads are to be written by 

MODFLOW, and writes an instruction file through which these quantities can be read 

by PEST. As well as this, it writes part of a PEST control file containing measured 

heads and associated weights. This partial control file can easily be combined with 

other PEST control file fragments to create an entire PEST control file for a complex 

inverse problem. 

Using MKMHOBS  

Preconditions for Use 

Use of MKMHOBS is predicated on the assumption that a MODFLOW 2005 model 

has already been built, and that a set of input files for this model have been written. 

MKMHOBS reads the name file, discretisation file and basic package input file 

pertaining to this input dataset. However if the name file cites an existing heads 

observation process input file (which has a code of ñhobò in the name file) it will 

cease execution with an appropriate error message, for its job is to create such a file 

and add it to the existing MODFLOW input dataset. 

It is also assumed that a set of borehole head measurements exist in bore sample file 

format. As is discussed elsewhere in this manual, this file type is model-independent, 

with data linked to dates and times rather than stress periods and time steps. It is part 

of MKMHOBSôs task to re-caste these times as model simulation times. A bore 

coordinates file must also be provided, this containing the geographical location of 

each head measurement site. On the basis of these coordinates, and geographical data 

provided in a grid specification file, MKMHOBS calculates the grid cell within which 

each measurement site lies, and the local cell coordinates for that site. 

The existing MODFLOW model can be steady-state or transient, or can contain a 

combination of both of these stress period types; MKMHOBS makes no distinction 

between these. However, unlike MODFLOW, MKMHOBS insists that steady-state 

stress periods have a finite length, for this length is employed for positioning of 

measurement dates and times in respective stress periods. MKMHOBS can supply 

measurements to MODFLOW at simulation times that correspond exactly to the time 

elapsed between the commencement of the simulation and the date/time of each 

measurement (irrespective of the steady-state or transient status of each stress period); 

alternatively, measurements can be migrated by MKMHOBS to the nearest time step 

beginning/end (including the beginning of the simulation if appropriate). 



MKMHOBS  136 

 

 

Measurements which correspond to times that are outside of the simulation period are 

ignored. 

Running MKMHOBS 

Like other members of the Groundwater Data Utilities, MKMHOBS will not execute 

unless a file named settings.fig is present in the directory from which it is run. It needs 

to obtain the date format (ñdd/mm/yyyy ò or ñmm/dd/yyyy ò) from this file. 

MKMHOBS obtains information from the user through the userôs response to a series 

of questions. As for other members of the Groundwater Data Utility suite, the user can 

backtrack to the previous question by responding with ñeò and then <Enter> to the 

current question. 

MKMHOBS commences execution by issuing the following series of prompts:- 

 Enter name of grid specification file:  

 Enter name of bore coordinates file:  

 Enter name of bore listing fil e:  

 Enter name of bore sample file:  

If a filename file (named files.fig) is present in the directory from which the command 

to run MKMHOBS is issued, the names of a default grid specification file, bore 

coordinates file and bore sample file may accompany the above prompts; if these 

names are suitable, they can be accepted by simply pressing the <Enter> key. 

As usual, the names of bores cited in all pertinent files must be 10 characters or less in 

length. Only those bores in the bore sample file which are also listed in the bore listing 

file will be included in the observation dataset written to the MODFLOW head 

observation file by MKMHOBS. Coordinates for all such bores must be provided in 

the bore coordinates file. 

MKMHOBSôs next prompt is:- 

 Assign observa tions to end of stress period or occurrence time? [s/o]:  

Respond with ñsò or ñoò as appropriate. In the latter case the ñoffset timeò TOFFSET 

written to the MODFLOW heads observation process input file is calculated as the 

elapsed time between the date/time corresponding to the beginning of the simulation 

(see below) and the actual measurement time (unless the measurement was taken 

either before commencement of the simulation or after termination of the simulation, 

in which case it is ignored). Alternatively, if the userôs response to the above prompt 

is ñsò, MKMHOBS calculates a TOFFSET equal to the elapsed time between the 

beginning of the simulation, and the time step beginning/end nearest to the actual 

taking of the measurement. Where more than one measurement is interpolated to the 

same time step start/finish, these measurements are averaged and measurement 

weights pertaining to these measurements (see below) are summed. 

MKMHOBS next prompts:- 

Use absolutes or differences (i.e. drawdowns) in calibration process? [a/d]:  



MKMHOBS  137 

 

 

As recorded in MODFLOW observation package documentation, MODFLOW 

provides the option of employing head differences, as well as some heads, in 

sensitivity calculation and in the parameter estimation processes. Where a series of 

measured heads are provided for the same bore, the first of these can be employed for 

calculation of sensitivities, while for ensuing measurements the drawdown with 

respect to the first measurement is employed in sensitivity calculation. This option is 

activated by setting the ITT variable for the pertinent bore to 2 in the heads 

observation process input file. By responding with ñdò to the above prompt, 

MKMHOBS will activate this option where multiple observations from a single well 

are supplied in the bore sample file. Note, however, that as presently programmed, 

MKMHOBS will cease execution with an error message if the ñdò option is supplied, 

as use of this option raises certain issues with respect to construction of a PEST input 

dataset which have not yet been resolved. 

Next MKMHOBS asks:- 

 Enter value for all weights:  

A single weight is employed for all head observations. This is employed in calculation 

of the STATISTIC recorded on the MKMHOBS-generated observation process input 

file for all head measurements. This weight is also directly transferred (for all head 

observations) to the partial PEST control file written by MKMHOBS. Individual 

observation weights can be modified manually if desired; alternatively, once a 

complete PEST input dataset has been constructed, utility programs such as ADJOBS 

can be employed for weights manipulation. 

Next MKMHOBS prompts for the name of the MODFLOW name file pertaining to 

the current model. The prompt is:- 

 Enter name of MODFLOW name file:  

MKMHOBS reads this file in order to ascertain the name of the discretisation and 

basic package input files pertaining to the current model (which it then reads). It also 

alters the name file, adding the name of the head observation process input file which 

it writes, and of the data file containing the simulated equivalents to head observations 

which MODFLOW writes when it runs. 

Next MKMHOBS acquires information which it needs in order to link MODFLOW 

simulation times to real-world times as recorded in the bore sample file. Its prompts 

are:- 

  Enter simulation starting date [dd/mm/yyyy]:  

 Enter simulation starting time [hh:mm:ss]:  

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:  

(Note that if requested through the settings file settings.fig, the first of these prompts 

asks for the simulation starting date in the format ñmm/dd/yyyy ò rather than 

ñdd/mm/yyyy ò as indicated above.) 

Finally MKMHOBS prompts for the names of its output files:- 

 Enter name for MODFLOW OBS file:  

 Enter name for MODFLOW observation data file:  



MKMHOBS  138 

 

 

 Enter name for corresponding PEST instruction file:  

 Enter name for PEST building block file:  

The first of these is the head observation process input file which it is MKMHOBSôs 

task to write. The second is the head observation data file which it is MODFLOWôs 

task to write. Both of these names must be added to names already listed in the 

MODFLOW name file. If PEST is to be employed for MODFLOW inversion, it must 

read the head data file after every MODFLOW run. This will require use of an 

instruction file, which MKMHOBS also writes, providing it with a name supplied by 

the user in response to the third of the above prompts. MKMHOBS also writes part of 

a PEST control file (referred to as a ñPEST building block fileò in the above prompt), 

containing elements from the ñobservation groupsò, ñobservation dataò and ñmodel 

input/outputò sections of a PEST control file specific to the head observations 

introduced to the parameter estimation process through the bore sample file which 

MKMHOBS processes. These sections can be added to another PEST control file by 

cutting and pasting, or with the help of pertinent utility software. 

Note that as presently programmed, MKMHOBS cannot accommodate the use of 

bores which tap multiple layers. 

What MKMHOBS Does 

MKMHOBS undertakes the following tasks. 

1. First it reads the bore coordinates and bore listing files. For each bore cited in 

the latter file it calculates the cell in which the respective bore lies, as well as 

its local cell coordinates (i.e. MODFLOW ROFF and COFF values). 

2. It reads the MODFLOW discretisation file for the current model to ascertain 

stress period and time step lengths employed by this model. 

3. It reads the MODFLOW basic package input file, in order to ensure that all 

bores cited in the bore listing file lie within an active cell. 

4. For each head measurement in the bore sample file associated with a bore 

listed in the bore listing file MKMHOBS evaluates the elapsed time since the 

beginning of the simulation in the same time units as those employed by the 

MODFLOW model. This becomes the TOFFSET variable (relative to the 

beginning of the first stress period) for that measurement. Measurements 

which fall outside the simulation time are rejected. If requested by the user, the 

TOFFSET value assigned to each measurement is altered to that of the nearest 

time step beginning/end. 

5. MKMHOBS next writes the head observation process input file based on 

measurements contained within the bore sample file. All measurements are 

assigned a STATISTIC equal to the inverse of the user-supplied weight; 

STAT-FLAG is thus assigned a value of 1 for all observations. If more than 

one measurement pertains to the same TOFFSET after migration to the nearest 

time step beginning/end (if such migration is requested by the user), affected 

heads are averaged and corresponding weights are summed. Measurement 



MKMHOBS  139 

 

 

names are formulated through appending a count to the name of the bore to 

which each measurement pertains; the count recommences with each new 

bore. 

6. It modifies the MODFLOW name file, adding to the list of files already 

tabulated in the name file, the name of the new head observation process file 

and of the data file which MODFLOW must write containing the simulated 

equivalents to observations. A copy of the original name file is kept in a file 

whose name is written to the screen for the userôs convenience. 

7. It writes an instruction file through which PEST can read MODFLOW-

generated equivalents to observations after each MODFLOW run from the 

simulated equivalent data file. 

8. Finally, MKMHOBS writes part of a PEST control file, recording 

measurements supplied in the bore sample file, the instruction file through 

which the MODFLOW-generated equivalents to these measurements can be 

read, and the name of the file from which these are actually read. 

Uses of MKMHOBS 

A MODFLOW observation process input file is complex; construction of this file by 

hand, especially if there are many observations, is a time-consuming and error-prone 

task. MKMHOBS makes this task easy.  

Where PEST employs MODFLOW-generated derivatives as a basis for parameter 

estimation, observations must be supplied to MODFLOW through one or more 

observation process input files. Thus use of MKMHOBS can enhance PEST 

parameter estimation functionality in the MODFLOW context through providing it 

with access to MODFLOW-calculated derivatives. 

See Also 

See also ASENPROC, MOD2OBS, SMP2SMP and PESTPREP. 

Acknowledgement 

The writing of this utility was supported by a contract with Boise State University 

under USEPA Grant X-96004601-0. I wish to express my gratitude for this support. 



MOD2ARRAY  140 

 

 

MOD2ARRAY  

Function of MOD2ARRAY  

MOD2ARRAY can be employed as a precursor to the use of pilot point 

parameterisation, as well as null space Monte Carlo and many other types of analysis. 

Such analyses are much easier to perform when the MODFLOW and/or MT3D arrays 

on which these analyses are based (for example hydraulic property or layer elevation 

arrays) reside in files of their own, with one such file per model layer. Unfortunately 

however, not all MODFLOW/MT3D graphical user interfaces provide the option of 

writing MODFLOW/MT3D arrays to separate files in this manner. MOD2ARRAY 

was written to rectify this problem. It reads a MODFLOW or MT3D input file, and 

extracts arrays of interest from them, writing these arrays to separate files. It replaces 

array headers in the MODFLOW/MT3D input file from which these arrays are 

extracted with new headers which direct the attention of MODFLOW or MT3D to 

these files for the reading of the pertinent arrays. 

Use of MOD2ARRAY is predicated on the assumption that the graphical user 

interface which wrote the MODFLOW/MT3D input dataset identifies arrays within 

the files comprising this dataset using easily recognised text strings. These strings are 

not part of the normal MODFLOW/MT3D input protocol; however they are written 

by most MODFLOW/MT3D file preparation programs. 

Using MOD2ARRAY 

MOD2ARRAY provides a high degree of flexibility in the way in which it reads and 

extracts arrays. Hence it provides the user with a number of options; it is important 

that these options be correctly understood if MODFLOW/MT3D is to read the 

MOD2ARRAY-modified MODFLOW/MT3D input dataset without incurring a run-

time error. 

In common with all programs of the Groundwater Data Utilities, MOD2ARRAY 

receives information from the user through a series of prompts. If the response to any 

of these prompts is simply ñeò followed by <Enter>, MOD2ARRAY backtracks to the 

previous prompt. This allows quick recovery from mistaken input. 

MOD2ARRAY begins execution by asking for the name of a grid specification file for 

the current model: 

 Enter name of grid specification file:  

It reads the number of rows and columns comprising the current model grid from this 

file. It then asks for the name of the MODFLOW or MT3D input file from which it 

must extract data arrays. 

 Enter name of MODFLOW/MT3D input file:  

In a MODFLOW or MT3D input file, each array is preceded by an array header, 

informing MODFLOW/MT3D how the array is to be read (or whether the array is in 

fact uniform-valued and therefore does not need to be read at all). The protocol is 



MOD2ARRAY  141 

 

 

slightly different between these two programs. At the time of writing, these 

differences include the following. 

¶ MT3D does not allow the use of keywords such as ñINTERNALò, 

ñOPEN/CLOSEò etc;  

¶ A LOCAT variable in MT3D of less than 100 indicates that the array already 

resides on another file. In contrast, the LOCAT variable in a MODFLOW 

input file indicates the unit number from which the array is to be read; this unit 

number may or may not be the same as that from which the file is currently 

being read. 

¶ Certain array reading conventions are available in MT3D which are not 

available in MODFLOW (for example the zone and block reading 

conventions). These are indicated by LOCAT variable values of greater than 

100 (but, at the time of writing, less than 104). 

In order that it knows how to read arrays from the nominated MODFLOW/MT3D 

input file, MOD2ARRAY next asks the following question about the 

MODFLOW/MT3D input file which it must read:- 

 Does this use MODFLOW or MT3D array header convent ion?  [f/t]:  

In general, respond with ñfò if  the file is a MODFLOW input file and ñtò if it is an 

MT3D input file. Note however, that if a MODFLOW input file is being read, 

MOD2ARRAY assumes that a positive LOCAT variable indicates that the array is 

recorded just below the array header in the same file. Thus it cannot detect the 

presence of arrays on external files unless the OPEN/CLOSE convention is employed 

for this purpose. 

MOD2ARRAYôs next prompt is:- 

 Enter text identifier for arrays to be extracted fr om this file:  

This is the string by which arrays are recognized. For example, a graphical user 

interface (GUI) may write the string ñVERTICAL HYDRAULIC CONDUCTIVITY 

FOR LAYER Nò (where the layer number is substituted for ñNò) after every 

occurrence of the pertinent array header on the MODFLOW LPF input file which it 

writes. In that case, enter the string ñverticalò if this string is sufficient to distinguish it 

from array headers for other data types (notice case insensitivity). The same GUI may 

use the string ñHYDRAULIC CONDUCTIVITY FOR LAYER Nò for horizontal 

conductivity. Use of the string ñhydraulicò is obviously insufficient to distinguish 

between the horizontal and vertical hydraulic conductivity headers. However the 

string ñ   hydraulicò (with two spaces preceding the word ñhydraulicò) will allow these 

two header types to be distinguished. Note that in responding to the above prompt, it 

is not necessary that the string be enclosed in quotes; however if any spaces are 

contained within the string then the use of quotes is essential. 

If MOD2ARRAY finds the user-specified string on any line of the 

MODFLOW/MT3D input file, it also searches for the word ñlayerò on that line (hence 

the word ñlayerò should not be supplied with the string). If it finds this word, it 



MOD2ARRAY  142 

 

 

attempts to read the layer number from the (possibly space-delimited) string 

immediately following it. If it is able to do this, the array is associated with that layer 

(and written to a file which is associated with the same layer); otherwise the array is 

assumed to be layer-independent and written to a layer-independent file. (The top 

elevation of the model is an example of a layer-independent array.) 

MOD2ARRAY next asks:- 

 Are this/these integer array(s) or real array(s) [i/r]:  

Either is permitted. Examples of integer arrays are IBOUND arrays for each layer. It is 

important that the correct answer be provided to this question, as array reading and 

writing conventions are different for these two data types. 

Next MOD2ARRAY asks for the name of the MODFLOW or MT3D (or SEAWAT) 

name file associated with the current model. The prompt is:- 

 Enter name of MODFLOW/MT3D name file:  

MOD2ARRAY then reads this file, establishing that the nominated MODFLOW input 

file is indeed cited in it. It also makes a list of unit numbers employed in the current 

MODFLOW/MT3D (or SEAWAT) dataset. These are listed in the second column of 

the name file. 

MOD2ARRAYôs next prompt is:- 

 Enter filename base for array output files:  

Suppose that a filename base of ñbaseò is supplied in response to the above prompt. 

MOD2ARRAY will write extracted real arrays to files named base1.ref, base2.ref, 

base3.refé. basen.reféetc where n is the layer number associated with the array. 

Integer arrays will be written to files base1.inf, base2.inf, base3.infé. basen.inféetc. 

Where an array is not associated with a layer, the name of the file in which the array is 

stored is simply base.ref or base.inf. 

Recall from Part A of this manual that the extension ñrefò stands for ñreal formattedò 

while the extension ñinfò stands for ñinteger formattedò. Unformatted file storage by 

MOD2ARRAY is not allowed. 

If the COLROW setting in file settings.fig has been set to ñyesò indicating the need for 

members of the Groundwater Data Utilities suite to write a number-of-columns, 

number-of-rows header to integer and real array files, MOD2ARRAY checks that this 

is indeed the userôs wish in the present case by asking:- 

 Include NCOL/NROW header in these files? [y/n]:  

If it is intended that MODFLOW or MT3D read these files, then the response to this 

prompt should definitively be ñnoò. However if it is required that other utility 

programs read them, and these programs expect a number-of-columns, number-of-

rows header, then an answer of ñyesò is more appropriate. 

As well as writing array files, MOD2ARRAY rewrites the MODFLOW/MT3D input 

file from which arrays are extracted, with headers for extracted arrays replaced by 

headers that direct MODFLOW or MT3Dôs attention to pertinent external array files. 



MOD2ARRAY  143 

 

 

It asks for the name of the new MODFLOW/MT3D input file using the following 

prompt:- 

 Enter name for altered MODFLOW/MT3D input file:  

Two conventions are available for directing MODFLOW/MT3Dôs attention to 

external files in order to read arrays. The first is activated through using an 

OPEN/CLOSE statement in the array header, followed by the name of the file holding 

the array. The second is activated through provided a unit number different from that 

with which the MODFLOW input file is being read, and through citing that unit 

number together with a DATA specifier and the pertinent filename in the MODFLOW 

or MT3D (or SEAWAT) name file. The first option is only available for MODFLOW 

input files, whereas the second option is available for both MODFLOW and MT3D 

input files. The first is preferable, however, as it does not require that all array files be 

open from the moment of commencement of MODFLOW execution. Hence the 

response to MOD2ARRAYôs next prompt, which is: 

 Use OPEN/CLOSE or DATA convention for array headers in this file  [o/d]:  

should be ñoò if the input file from which arrays are being extracted is a MODFLOW 

input file, and ñdò  if it is an MT3D input file. (It is hoped that the OPEN/CLOSE 

convention will one day become available in MT3D; hence the above question is 

specifically asked.) 

MOD2ARRAYôs final prompt is:- 

 Enter name for altered MODFLOW/MT3D name file:  

In the new name file, the name of the new MODFLOW/MT3D input file replaces that 

of the old one. Also, if the ñDATAò option is supplied in response to the above 

prompt, the names of array files and corresponding unit numbers are added to the 

name file. 

Once it has received all of the above information, MOD2ARRAY goes about its 

business of extracting arrays, writing them to pertinent array files, re-writing the 

MODFLOW/MT3D input file, and altering the name file. Once this task is complete, 

MODFLOW, MT3D (or SEAWAT) can be immediately run on the basis of the new 

name file. 

Uses of MOD2ARRAY 

Arrays are the building blocks of MODFLOW and MT3D datasets. In most parameter 

estimation contexts, it is convenient for some of these arrays to be stored in dedicated 

files so that they can be written by model preprocessing software using current 

parameter values on each occasion that the model is run. Sometimes more complex 

processing can be carried out involving many such arrays (see for example the 

ELEV2CONC  and PARM3D utilities). All model preprocessors and the model itself 

(which may be comprised of MODFLOW, MT3D, both of these together, SEAWAT, 

or some other program) are then run from a batch or script  file. In estimating 

parameters for these model(s), PEST calls this batch file many times; hence its name 

is provided to PEST through the ñmodel command lineò section of the PEST control 

file. 



MOD2ARRAY  144 

 

 

See Also 

See also ELEVCONC, PARM3D, FAC2REAL, INT2REAL and TWOARRAY. 



MOD2OBS  145 

 

 

MOD2OBS 

Function of MOD2OBS 

Program MOD2OBS generates a bore sample file on the basis of results stored in an 

unformatted MODFLOW or MT3D output file. However unlike program MOD2SMP 

which generates ñsamplesò at model output times, MOD2OBS generates ñsamplesò at 

the same dates and times as samples recorded in an existing bore sample file. It 

achieves this by carrying out spatial interpolation to the sites of bores, and temporal 

interpolation of model results to measurement dates and times. Thus MOD2OBS 

provides a means of directly comparing field data with model-generated data. It can 

thus form a vital component of a composite model used in a calibration setting. 

Using MOD2OBS 

MOD2OBS commences execution with the prompt:- 

 Enter name of grid specification file:  

Type the name of a grid specification file. Alternatively, if a filename file 

(files.fig ) is present in the current directory, MOD2OBS may provide a default 

filename with the above prompt; press <Enter> to accept the default or supply the 

required name. 

Next MOD2OBS prompts for the name of a bore coordinates file:- 

 Enter name of bore coordinates file:  

Once again, if a filename file is present in the current directory a default may be 

supplied; this can be accepted simply by pressing the <Enter> key. MOD2OBS 

requires bore coordinates so that it can spatially interpolate model results from grid 

cell centres to the sites of observation bores. The user is able to select which bores 

will be involved in the interpolation process by providing the name of a bore listing 

file in response to the prompt:- 

 Enter name of bore listing file:  

Each bore cited in the bore listing file should also be cited in the bore coordinates file. 

If desired, the bore listing file can also be the bore coordinates file; thus all bores cited 

in the bore coordinates file will take part in the interpolation process. 

Next MOD2OBS prompts for the name of a bore sample file:- 

 Enter name of bore sample file:  

As usual, if the name a bore sample file appears in the filename file (files.fig ) 

situated in the current directory, that name will appear as a default; it can be accepted 

by simply pressing the <Enter> key.  



MOD2OBS  146 

 

 

While the bore sample file can contain data pertaining to many more bores than those 

listed in the bore listing file, and record sample values over a time interval far 

exceeding the model simulation time, it is a good idea to reduce the amount of 

redundant information present in that file, as far as MOD2OBSôs present task is 

concerned, to a minimum. This is because MOD2OBS must allocate sufficient 

memory to hold virtually all of the information contained within this file as it 

executes; thus unless your machine possesses a lot of RAM, allocation problems may 

ensue. Should this occur, MOD2OBS will issue an appropriate error message and 

terminate execution. 

It is MOD2OBSôs task to spatially interpolate model results to the locations of bores 

cited within the bore sample file (and bore listing file), and to undertake time-

interpolation of model results to the times at which samples were taken for each such 

bore. Thus, for each sample within the user-provided bore sample file for which it is 

possible to undertake time-interpolation from within the model simulation timespan, 

MOD2OBS will provide a corresponding model-generated ñsampleò. The set of such 

samples will be recorded in bore sample file format. 

MOD2OBS reads model results from a MODFLOW or MT3D output file of the same 

type as is used to store heads, drawdowns and concentration data (as well as other 

array data such as compaction in certain MODFLOW packages). In these files, model 

array data is recorded layer by layer. MOD2OBS prompts the user for the name of the 

unformatted file which it must read to obtain this model-calculated data:- 

 Enter name of unformatted m odel - generated file:  

It is the userôs responsibility to ensure that MODFLOW or MT3D stores enough data 

in this file to allow accurate temporal interpolation to bore sample times. For times 

which do not correspond to model output times, MOD2OBS performs a linear 

interpolation between arrays present in the unformatted model output file. Hence, 

through the setting of appropriate Output Control variables, the user should ensure 

that unformatted output is provided at close enough time intervals for linear 

interpolation to be accurate. Furthermore, data should be provided for all model layers 

that contain at least one listed bore. As spatial interpolation is intra-layer only 

(employing a bilinear interpolation scheme), it is not necessary that the unformatted 

model output file contain data for any other model layers. 

MOD2OBS needs to know whether it is dealing with a MODFLOW or MT3D 

unformatted output file. This is because the header to each unformatted array is 

slightly different for each of these models. So it prompts:- 

 Is this a MODFLOW or MT3D file?  [f/t]:  

It also needs to know the ñthreshold valueò, above which a cell is considered to be 

inactive or dry:- 

 Enter inactive threshold value for arrays in this file:  



MOD2OBS  147 

 

 

MOD2OBS then asks a series of questions, the answers to which will allow it to 

calculate the date and time corresponding to each model output time, the latter being 

recorded in the header to each unformatted array:- 

  Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:  

  Enter simulation st arting date [dd/mm/yyyy]:  

  Enter simulation starting time [hh:mm:ss]:  

(Note that the date format used by MOD2OBS depends on the contents of file 

settings.fig  situated within the current directory. If this file is not present, 

MOD2OBS will not run.) 

MOD2OBS then asks:- 

 How many layers in the model?  

It needs to know this so that it can dimension arrays appropriately before embarking 

on its calculations. 

MOD2OBS then prompts:- 

If a sample time does not lie between model output times, or if there  

is only one  model output time, value at the sample time can equal 

that at nearest model output time: -  

Enter extrapolation limit in days (fractional if necessary):  

If a sample from a particular bore lies either before the first time of model output, or 

after the last time of model output, MOD2OBS cannot perform a linear  interpolation 

from model output times to the bore sample time. Hence it will calculate an 

ñextrapolatedò value at that time equal to the first or last model-calculated value 

respectively for that bore. However, there is a limit to the time over which such 

extrapolation can take place; this is set by the userôs response to the above prompt. 

Note that the earliest time at which MODFLOW output is available is the end of the 

first time step. Hence if you require model output at a time as close as possible to the 

beginning of the simulation, make this first time step as short as possible. 

Next MOD2OBS requests the name of the bore sample file which it must write:- 

 Enter name of bore sample output file:  

MOD2OBS carries out temporal and spatial interpolation to the sites and times cited 

in the user-provided bore sample file. It then produces a bore sample file of its own, 

with samples at exactly the same dates and times as those occurring within the user-

provided bore sample file, but with model-generated numbers substituted for 

measured ones. It is important to note, however, that there may not be a sample in the 

MOD2OBS-generated bore sample file corresponding to every sample in the user-

provided bore sample file. MOD2OBS does not generate a sample for a particular 

bore and time under the following conditions:- 

¶ if a user-supplied sample precedes the earliest time of model output by an amount 

exceeding the extrapolation limit, 



MOD2OBS  148 

 

 

¶ if a user-supplied sample postdates the latest time of model output by an amount 

exceeding the extrapolation limit,  

¶ if there are no arrays within the unformatted model output file for the layer 

holding a listed bore, 

¶ if a bore appears in the bore listing file but not in the bore sample file, 

¶ if a bore appears in the bore sample file but not in the bore listing file. 

Interpolation also cannot take place if a bore does not lie within the finite-difference 

grid, or if it lies within an inactive or dry cell; under such circumstances an 

appropriate message replaces the sample value in the MOD2OBS-generated bore 

sample file. Thus if a cell becomes dry during a PEST run in which MOD2OBS forms 

part of a composite model, the same instruction set can read the bore sample file 

generated after all model runs because there will be no difference in the number of 

bores listed after any run. (However if the instruction set includes an instruction to 

read the head value for a bore in the dry cell, an error condition will arise. The 

resulting PEST error message will be such as to direct the user to the source of the 

problem.) 

Uses of MOD2OBS 

MOD2OBS finds its greatest use in model calibration using PEST. A comparison 

between observed borehole data and its model-generated counterparts is easily 

achieved by running MODFLOW/MT3D followed by MOD2OBS as a composite 

model. Because MOD2OBS performs both spatial and temporal interpolation to the 

sites and times of measured data, and presents the results of its calculations in the 

same format as the measured data (ie. as a bore sample file), comparison between the 

two datasets can be made with ease. When used in conjunction with PEST (with the 

aid of program PESTPREP for PEST input file generation), MOD2OBS forms a vital 

component of the model calibration process.  

MOD2OBS is just as useful in steady-state MODFLOW calibration as it is in transient 

calibration. However in this case there will normally be only one ñtimeò at which 

there is model output (equal to the notional ñelapsed simulation timeò since the 

beginning of the simulation). In this case MOD2OBS cannot interpolate between 

neighbouring MODFLOW output times to the time of a bore reading. Instead, using 

the extrapolation facility discussed above, it conducts only spatial interpolation to 

sample sites, assuming temporal coincidence of borehole sample times with model 

output times. In this case the user should ensure that the measurement bore sample file 

contains steady-state samples which are all referenced to a date and time which is 

close to the notional model output time (ie. within the temporal extrapolation limit). 

This is a simple matter if it can be assumed that steady-state conditions prevail on a 

certain date. Beware, however, of making the user-supplied extrapolation time too 

large, for then neighbouring samples in the user-supplied bore sample file may be 

close enough to the notional model output time to warrant inclusion in the 



MOD2OBS  149 

 

 

MOD2OBS-generated bore sample file. If this occurs you must either decrease the 

extrapolation time, or assign duplicated observations a weight of zero. 

See Also 

See also MOD2DAT, PESTPREP and SMP2SMP. 



MOD2SMP  150 

 

 

MOD2SMP 

Function of MOD2SMP 

MOD2SMP reads an unformatted output file generated by MODFLOW or MT3D. If 

written by MODFLOW this file may contain layer-specific arrays of head, drawdown, 

compaction, preconsolidated head or subsidence at one or a number of elapsed 

simulation times. An unformatted MT3D output file may contain concentration data 

expressed in similar format. MOD2SMP interpolates the data contained within these 

arrays to a user-specified set of boresites at all recorded model output times, writing 

its output in the form of a bore sample file. Thus those programs documented in this 

manual which are able to read and manipulate field data stored in a bore sample file 

can process model-generated data in the same way. 

Using MOD2SMP 

Program MOD2SMP will not run unless a settings file (settings.fig ) is present 

within the directory from which it is invoked. As discussed in Section 2.19 of Part A 

of this manual, a settings file determines the manner in which dates are represented by 

the Groundwater Data Utilities. 

MOD2SMP commences execution with the prompt: 

 Enter name of grid specification file:  

If the name of a grid specification file has been read from a filename file 

(files.fig ) resident in the current directory, it will be included in the above 

prompt as a default filename. Either press <Enter> to accept the default or type in the 

appropriate name. MOD2SMP needs to know grid specifications so that it can carry 

out interpolation from the model grid to user-specified boresites. As coordinates must 

be supplied for the latter, MOD2SMP next requests the name of a bore coordinates 

file: 

 Enter name of bore coordinates file:  

(Depending on the existence and contents of a filename file in the current directory, a 

default filename may be included in the above prompt.) Note that the bore coordinates 

file must include the layer number to which each bore pertains; see Section 2.2 of Part 

A of this manual. 

A user can select which of the bores in the bore coordinates file are to be represented 

in the MOD2SMP-generated bore sample file by listing the desired bores in a bore 

listing file. So MOD2SMP prompts: 

 Enter name of bore listing file:  



MOD2SMP  151 

 

 

Note that the file provided previously as a bore coordinates file can be re-read as a 

bore listing file if desired; in this way all bores represented in the former file will be 

represented in the MOD2SMP-generated bore sample file. 

MOD2SMP next prompts for the name of the unformatted MODFLOW or MT3D 

output file which it must read and interpolate to the bores cited in the bore listing file. 

This file should contain arrays for all layers containing bores for which information is 

required; obviously, to be of most use in generating a bore sample file, it should 

contain output arrays at more than one elapsed simulation time. MOD2SMP prompts: 

 Enter name of unformatted model - generated file:  

 Is this a MODFLOW or MT3D file?  [f/t]:  

Then it asks: 

 How many different output times are represented in this file?  

MOD2SMP needs to know the number of different output times so that it can 

dimension arrays appropriately before reading the MODFLOW/MT3D-generated 

output file and carrying out spatial interpolation. Note that, for a multilayered model, 

there will be more arrays in the output file than there are model output times; it is the 

latter quantity that is required by MOD2SMP (unlike MODBORE from the PEST 

MODFLOW/MT3D Utilities which requires as part of its input dataset the number of 

actual arrays present in the MODFLOW or MT3D output file). Note also that if you 

are unsure of the contents of an unformatted MODFLOW or MT3D output file, you 

can use program MANY2ONE to read and report each of the array headers. 

Alternatively, supply a number that you are sure is greater than the number of output 

times; if it is not large enough MOD2SMP will soon inform you. 

In order that it can adjust its spatial interpolation to take account of dry and inactive 

model cells MOD2SMP next prompts: 

 Enter blanking threshold value for arrays in this file:  

Enter a positive number that is less than HDRY and HNOFLO (if the array is a head or 

drawdown array generated by MODFLOW) or CINACT (if the array was generated by 

MT3D). Some MODFLOW preprocessors supply default values such as 999.99 and 

1.0E30 for these variables. Others supply negative numbers as defaults; these are fine 

as long as their absolute value exceeds the above threshold. 

Before it can generate a bore sample file, MOD2SMP needs to know how to convert 

elapsed model simulation times to true dates and times. So it asks: 

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:  

 Enter simulation starting date [dd/mm/yyyy]:  

 Enter simulation starting time [hh:mm:ss]:  

(Note that the date format used in the second of the above prompts depends on the 

contents of the settings file settings.fig .) Then, after prompting: 

 Enter name of bore sample output file:  



MOD2SMP  152 

 

 

MOD2SMP reads the MODFLOW/MT3D output file, interpolating the arrays 

contained therein to the sites of the bores listed in the bore listing file. MOD2SMP 

uses an identical grid-to-point interpolation scheme to that of program MODBORE 

from the PEST MODFLOW/MT3D Utilities. 

In its output bore sample file, MOD2SMP employs certain sample values to indicate 

certain error conditions; wherever these indicator values are employed, a fifth ñxò 

column is added so that any of the Groundwater Data Utilities which read the file will 

ignore the dummy values. Thus a sample value of 7.1E37 indicates that a bore does 

not lie within the finite difference grid, a sample value of 5.1E37 indicates that the 

bore lies within a cell whose absolute model-generated value is above the blanking 

threshold and a value of 3.1E37 indicates that no arrays pertaining to the layer in 

which a bore lies were generated by MODFLOW or MT3D for a particular output 

time, in spite of the fact that arrays were generated for other model layers at this same 

output time. 

Uses of MOD2SMP 

Because it performs the dual functions of interpolating model results to bore locations 

and writing its results in the form of a bore sample file, use of MOD2SMP makes 

model-generated data ñlook likeò field data. Thus those Groundwater Data Utilities 

which process the data contained in a bore sample file are able to carry out the same 

tasks on ñmodel-generated field dataò contained in a bore sample file written by 

MOD2SMP. For example program SMP2HYD can be used to construct data files that 

can be used by commercial plotting software to generate borehole hydrographs. These 

can be plotted on the same graphs as measured borehole hydrographs, thus facilitating 

a comparison between model-generated data and field data. Another possibility is that 

program SMP2DAT can be used to set up a PEST run based on ñmodel-generated 

observationsò housed in a MOD2SMP-generated bore sample file. In this way optimal 

PEST settings can be determined while carrying out an inversion for which the answer 

is known before applying PEST to model calibration based on real field data. 

Alternatively, a similar procedure can be carried out using MOD2OBS and 

PESTPREP and/or BUD2SMP, SMP2SMP and PESTPREP. 

See Also 

See also BUD2SMP, MOD2SMPDIFF, MOD2OBS, PESTPREP and SMP2SMP. 

 



MOD2SMPDIFF  153 

 

 

MOD2SMPDIFF 

Function of MOD2SMPDIFF 

The operation of MOD2SMPDIFF is similar to that of MOD2SMP in that it reads a 

MODFLOW or MT3D unformatted output file and undertakes spatial interpolation 

from the arrays recorded in that file to the sites of bores. Such interpolation is 

undertaken at every simulation time represented in the MODFLOW/MT3D output 

file. Outcomes or this interpolation process are recorded in bore sample file format. 

The difference between MOD2SMPDIFF and MOD2SMP is that the former program 

computes differences or ratios between MODFLOW/MT3D outputs at user-nominated 

sites. These differences or ratios are then recorded in site sample file format rather 

than the individual heads or concentrations read from the MODFLOW/MT3D output 

files. 

Using MOD2SMPDIFF 

MOD2SMPDIFF has the following in common with most programs of the 

Groundwater Data Utility suite. 

1. A settings file named settings.fig must be present in the directory from which 

it is run. This must inform MOD2SMPDIFF of the date protocol which it must 

use in writing its output bore sample file (ñdd/mm/yyyyò or ñmm/dd/yyyyò). 

2. If the response to any prompt is ñeò followed by the <Enter> key, 

MOD2SMPDIFF will backtrack to its previous prompt. 

3. If a filenames file (named files.fig) is present in the current directory, 

MOD2SMPDIFF will look in that file for the name of the current bore 

coordinates file. (This is optional). 

MOD2SMPDIFFôs first two prompts are the same as those of MOD2SMP, namely:- 

 Enter name of grid specification file:  

 Enter name of bore coordinates file:  

Then, instead of asking for the name of a bore listing file, it asks for the name of a 

ñbore difference listing fileò. An example of such a file follows. 

 

B12321       B12322     DIFF  

BH35         BH23       DIFF35 - 23 

BH23U        BH23L      BH23U - L 

 

Part of a bore difference listing file. 

Each line of a bore difference listing file must contain three entries. The first two are 

the identifiers pertaining to two bores; each of these must figure in the previously-

named bore coordinates file. The third entry is a new name. This is the identifier 

which will be associated with the difference or ratio of heads/concentrations 



MOD2SMPDIFF  154 

 

 

interpolated from MODFLOW/MT3D arrays to the sites of the first two bores. As 

usual, a bore identifier must be 10 characters or less in length. If this is protocol is not 

observed, MOD2SMPDIFF will cease execution with an error message. 

MOD2SMPDIFF next asks:- 

 Take ratio or difference of first to second column of this file ?  [r/d]:  

Answer with ñrò or ñdò as appropriate. In the first case MOD2SMPDIFF calculates, at 

each of its output times, the difference between the head/concentration at the first bore 

cited on each line of the bore difference listing file and that at the second respective 

bore cited on the same line. In the second case the ratio between the two (first over 

second) is computed. 

Next MOD2SMPDIFF prompts for the name of the MODFLOW or MT3D 

unformatted output file which it must read:- 

 Enter name of unformatted model - generated file:  

As stated above, differences or ratios for heads/concentrations are computed at every 

output time represented in this file. Because the array headers are different for 

MODFLOW and MT3D output files, MOD2SMPDIFF needs to know what type of 

file it is being asked to read. So it prompts:- 

 Is this a MODFLOW or MT3D file?  [f/t]:  

and then:- 

 How many different output times are represented in this file?  

Respond to this prompt with a number equal to or greater than the number of output 

times for which arrays are recorded in the file. MOD2SMPDIFF needs to know this so 

that it can dimension arrays prior to reading the file. If you are unsure of this number, 

use the ARRDET program to ascertain the contents of the file. Alternatively, enter a 

number that errs on the high side. If you err on the low side do not worry; 

MOD2SMPDIFF will inform you if there are arrays corresponding to more simulation 

times than you had anticipated. 

MOD2SMPDIFFôs next prompt is:- 

 Enter blanking threshold value for arrays in this file:  

Any head or concentration whose absolute value is above this number is assumed to 

represent an inactive or dry cell. MOD2SMPDIFF adjusts its interpolation mechanism 

to account for these. 

The remainder of MOD2SMPDIFFôs prompts are the same as those of MOD2SMP, 

namely:- 

 Enter time units used by model (yr/day/hr/min/sec) [y/d/h/m/s]:  

 

 Enter simulation starting date [mm/dd/yyyy]:  

 Enter simulation starting time [hh:mm:s s]:  

 

 Enter name for bore sample output file:  



MOD2SMPDIFF  155 

 

 

After having received all the information that it requires from the user, 

MOD2SMPDIFF reads the nominated MODFLOW/MT3D output file and records its 

calculated differences or ratios to the nominated bore sample output file. 

The following should be noted. 

1. If either of the nominated bores comprising the first two identifiers on a 

particular line of the bore difference listing file lie within an inactive cell, dry 

cell, or outside of the grid altogether, the difference or ratio is assigned the 

value 1.1E37. 

2. If a ratio is sought and the denominator (i.e. the head or concentration 

corresponding to the second bore on a line of the bore difference listing file) is 

0.0, the ratio is provided as 1.0E30 or -1.0E30 depending on the sign of the 

numerator, unless the latter is zero, in which case the ratio is provided as 1.0. 

Uses of MOD2SMPDIFF 

There are occasions in model calibration where PEST should be asked to look at 

differences rather than (or in addition to) absolutes. For example, it is often 

advantageous to explicitly introduce the differences between heads in different layers 

to the parameter estimation process, assign these differences to their own observation 

group, and then ensure (through proper weights assignment) that the ñvisibilityò of 

this group in the objective function is sufficient for PEST to take notice of it. This 

may save these all-important differences from being ñdrownedò in measurement noise, 

thereby allowing better estimates of the vertical conductance of an aquitard to be 

gained. 

See Also 

See also ARRDET, MOD2OBS, MOD2SMP, SMPDIFF and SMPTREND. 



PARCOV  156 

 

 

PARCOV 

Function of PARCOV 

PARCOV reads a file containing parameter names and geographical coordinates. It 

also reads a geostatistical structure file containing one or a number of structure and 

variogram specifications. It writes a covariance matrix for the parameters supplied in 

the first of these files on the basis of a geostatistical structure supplied in the second. 

Using PARCOV 

PARCOV commences execution by prompting for the name of a ñparameter 

coordinates fileò:  

 Enter name of parameter coordinates  file:  

A parameter coordinates file should contain three columns of data. The first column 

should be comprised of parameter names. The second and third columns should be 

comprised of eastings and northings associated with respective parameters. 

PARCOV next prompts:- 

 Enter name of structure file:  

The format of a structure file is presented in part A of this manual. It contains 

specifications for one or a number of geostatistical structures, each of which can 

comprise a nugget and one or more nested variograms (which may be anisotropic if 

desired). Each structure has a name; one such structure is assigned to the parameters 

featured in the parameter coordinates file in response to the following prompt:- 

 Enter structu re to use for parameters :  

PARCOVôs final prompt is:- 

 Enter name for output matrix file:  

The name of a file to which the covariance matrix is written is supplied in response to 

this prompt. The format of this file is the same as that used by PEST matrix 

manipulation utilities. See PEST documentation for details. 

Elements of the covariance matrix assigned to parameters cited in the parameter 

coordinates file do not depend on whether the geostatistical structure with which these 

parameters are associated is provided with a TRANSFORM status of ñnoneò or ñlogò. 

However consistency is important. Thus any PEST control file which cites these same 

parameters (and for which the PARCOV-generated covariance matrix provides a 

statistical characterization), must also cite these parameters as log-transformed or 

untransformed, in accordance with the settings of the geostatistical structure on which 

basis the covariance matrix was constructed. 



PARCOV  157 

 

 

Uses of PARCOV 

PARCOV can be used for building a C(p) (i.e. a parameter covariance) matrix for the 

use of PEST utilities such as RESPROC, PREDERR, PARAMERR, members of the 

PREDVAR suite of utilities, and members of the PREDUNC utility suite. As such it 

furnishes the basis for calculation of the contribution to predictive error variance 

and/or uncertainty made by the inability of the model calibration process to capture 

system hydraulic property detail. In most modelling contexts this is the dominant 

contributor to model predictive error. 

See Also 

See also PPCOV, PPCOV3D and PPCOV_SVA. 

 

 

 



PARM3D  158 

 

 

PARM3D 

Function of PARM3D 

PARM3D facilitates the use of zones or pilot points in the parameterisation of a multi-

layer model where hydrogeological units do not necessarily coincide with model 

layers. Parameterisation of a three-dimensional model domain is undertaken by 

assembling two-dimensional property arrays, or through using these arrays as a basis 

for vertical interpolation. These processes are guided by zonal dispositions, these also 

being assigned through two-dimensional integer arrays; if required, zonal disposition 

can be modified in the course of PARM3D execution. 

When the parameterisation process is complete, PARM3D writes a series of two-

dimensional property arrays (one for each model layer) to which MODFLOWôs or 

MT3Dôs attention can be directed through appropriate OPEN/CLOSE statements 

inserted within its input files. 

Using PARM3D 

Keyboard Input 

PARM3D differs from many of the programs of the PEST Groundwater Data Utilities 

in that keyboard input is minimal. PARM3D prompts for only one item of 

information, viz. the name of its control file. As is standard practice for members of 

the Groundwater Data Utilities, responding to this prompt by pressing the ñeò key 

followed by the <Enter> key results in backtracking of program execution; in fact this 

results in termination of execution when undertaken in response to its first (and only) 

screen prompt. 

Like most of the programs of the PEST Groundwater Data Utilities, PARM3D 

requires that a file named settings.fig exist in the directory from which it is run. 

PARM3D reads the status of the COLROW variable cited within this file. If this is 

supplied as ñyesò, then a ñnumber of columns, number of rowsò header is expected at 

the top of each formatted integer or real array which PARM3D reads; similarly, 

PARM3D includes this header as the first line of any real array file that it writes. 

Alternatively, if COLROW is supplied as ñnoò, this header must not be present in any 

integer or real array file which PARM3D reads; nor will it be present in any array file 

which PARM3D writes. 

PARM3D Control File 

The PARM3D control file is subdivided into four sections. Optionally, as discussed 

below, one of these sections may be omitted. The names of these sections are:- 

¶ control data 

¶ layer files 



PARM3D  159 

 

 

¶ elevation files 

¶ parameter value assignment 

As is shown in the example below, each of these sections of the PARM3D control file 

must be introduced with a header stating the name of the section; in each case this 

name must follow an asterisk character. 

# An example PARM3D input file.  

 

* control data  

"grid spec.spc"  

6  1  

* layer files  

lay1.inf hcond1.ref  

lay2.inf hcond2.ref  

lay3.inf hcond3.ref  

lay4.inf hcond4.ref  

lay5.inf hcond5.ref  

lay6.inf hcond6.ref  

* elevation files  

bot0.ref  

bot1.ref  

bot2.ref  

bot3.ref  

bot4.ref  

bot5.ref  

bot6.ref  

* parameter value assignment  

zone 1 33.00 overwrite  

zone 3 99.99 overwrite  

zone 2 grad_arith 2 topp2.ref bott2.ref overwrite  

layer 1 rezone llay1.inf ignore_zero  

layer 2 rezone llay2.inf ignore_zero  

layer 3 rez one llay3.inf use_zero  

zone 0 1000.0 overwrite  

zone 9 5.55 overwrite  

default - 999  

Example of a PARM3D control file. 

A comment line can be inserted anywhere within a PARM3D control file; this line 

must begin with a ñ#ò character. A blank line can also exist anywhere within the file. 

Sections of the PARM3D control file are now discussed in detail. 

ñControl Dataò Section 

This section of the PARM3D control file contains only two lines. The first of these 

lines must contain the name of the grid specification file pertaining to the current 

model; see Part A of this manual for specifications of this file. If the name of this file 

contains a space, it must be enclosed in quotes. 

The second line of the ñcontrol dataò section must contain two integers. The first is 

the number of layers in the model (referred to as NLAY herein). The second is the 

value of a variable named ELEVFLAG. If ELEVFLAG is supplied as zero, then no 

layer elevation files will be provided later in the control file, and hence no ñelevation 

filesò section will be present within the current PARM3D control file. However if  



PARM3D  160 

 

 

ELEVFLAG is provided with a non-zero value, layer elevation files must be cited 

within an ñelevation filesò section of the current PARM3D control file. ELEVFLAG 

must not be set to zero if any of the ñinterp_arithò, ñinterp_geomò, ñgrad_arithò or 

ñgrad_geomò instructions are provided in the ñparameter value assignmentò section of 

the PARM3D control file. 

ñLayer Filesò Section 

The ñlayer filesò section of the PARM3D control file must contain NLAY lines of 

information. Each of these lines must contain two entries, each of these entries being 

the name of a file. The first file cited on each line of the ñlayer filesò section should 

contain a single integer array (the number of rows and columns in which should match 

that of the model grid). The following name pertains to a file that PARM3D must 

write. The model layer to which these two files pertain corresponds to the sequence in 

which they are recorded; that is, the first line of the ñlayer filesò section contains 

filenames pertaining to layer1, the second line contains filenames pertaining to layer 2, 

etc. 

Integer arrays (which are housed in the first file nominated on each line of the ñlayer 

filesò section) are used to define zonation within a model grid. Using a set of NLAY 

integer arrays, every cell within the model domain is assigned an integer value, this 

value indicating the zone to which the cell belongs. The same zone can appear in 

different model layers if desired. (Note that zone numbers can be re-assigned in the 

ñparameter value assignmentò section of the PARM3D control file as is explained 

below.) 

If the name of an integer array file has an extension other than ñ.inuò then the array is 

assumed to be stored in ASCII (i.e. text) format. However an ñ.inuò extension 

indicates to PARM3D that the nominated array is stored in an unformatted (i.e. 

binary) file. Caution should be exercised in using binary files, however, because 

different FORTRAN compilers read/write unformatted data using different protocols. 

If, for a particular layer, an integer array filename of ñnoneò is supplied, then an array 

is not read. Instead a dummy zone value of -99999999 is supplied to all cells within 

the pertinent model layer. 

It is PARM3Dôs job to write a hydraulic property array for each model layer; property 

values are assigned to cells within each layer using instructions provided in the 

ñparameter value assignmentò section of the PARM3D control file. The name of each 

file to which such an array will be written is supplied as the second entry on each line 

of the ñlayer arraysò section of the PARM3D control file. If any extension other than 

ñ.reuò is supplied for a filename, the array is written in ASCII (i.e. text) format. 

However if the filename has an extension of ñ.reuò the array is written to a binary file. 

If a filename of ñnoneò is supplied, then no array is written for that model layer. 

If any integer or real array filename cited in the ñlayer filesò section of the PARM3D 

control file contains a space, it should be enclosed in quotes. 



PARM3D  161 

 

 

ñElevation Filesò Section 

A PARM3D control file should contain an ñelevation filesò section only if the 

ELEVFLAG variable in the ñcontrol dataò section is provided with a non-zero value. 

The ñelevation filesò section of the PARM3D control file must contain NLAY+1 lines 

of data. Each such line should contain only one entry, viz. the name of a file 

containing a real array citing the elevation of the bottom of the pertinent model layer. 

Layers are arranged from 0 to NLAY. Thus the file cited on the first line should 

contain cell elevations for the top of layer 1; the file cited on the second line should 

contain cell elevations for the bottom of layer 1; the file cited on the third line should 

contain cell elevations for the bottom of layer 2; the file cited on the fourth line should 

contain cell elevations for the bottom of layer 3, etc. In all cases an extension of ñ.reuò 

indicates a binary file, while all other extensions indicate an ASCII file; a filename of 

ñnoneò is not permitted. 

ñParameter Value Assignmentò Section 

Each line within the ñparameter value assignmentò section of the PARM3D control 

file must contain an instruction through which hydraulic property values are assigned 

to cells within a zone or layer of the model domain. These instructions are carried out 

in the order in which they are provided; subsequent instructions can overwrite or 

modify values assigned to cells through previous instructions. 

Instructions fall into a number of broad categories, each of which will now be 

discussed in detail. (Note that keywords contained within a PARM3D instruction are 

case-insensitive.) 

Default Cell Value 

The ñparameter value assignmentò section must contain one (and only one) line 

beginning with the word ñdefaultò. Following that must be a real number. This is the 

value which PARM3D will assign to all cells within the model domain to which a 

value is not assigned by any user-provided instruction. It is important to note that, no 

matter where the ñdefaultò instruction appears in the ñparameter value assignmentò 

section of the PARM3D control file, the default value assignment operation is carried 

out only after all other instructions have been implemented. 

Layer Value Assignment 

All cells within a particular layer of the model grid can be directly assigned a value 

using an instruction beginning with the word ñlayerò. Some examples are shown 

below. 

layer 2 5.643 overwrite  

layer 5 layvals.ref geomav  

Examples of layer value assignment instructions. 

The first element of a layer value assignment instruction must be the word ñlayerò. 

Following that must be the layer number to which the instruction pertains; this must 



PARM3D  162 

 

 

be an integer greater than zero and less than the number of layers in the model. The 

next entry must be either a real number or the name of a file containing a real array. In 

the former case the real number is assigned to every cell in the nominated layer; in the 

latter case cell values are read from the file and assigned to matching rows and 

columns in the nominated layer of the model grid. (As for the other files discussed 

above, formatted array storage is assumed unless the extension of the nominated file is 

ñ.reuò.) 

If a particular cell in the nominated layer has not been previously assigned a value, the 

nominated number, or pertinent real array element value, is directly assigned to that 

cell. However if the cell has been assigned a value through a previous instruction, then 

five options are available for assimilating the new number into the model property 

array. The user must supply one of the following keywords (as the final entry of a 

layer value assignment instruction) in order to exercise the option of his/her choice. 

These keywords are ñoverwriteò, ñgeomavò, ñarithavò, ñmaxò or ñminò.  

If the ñoverwriteò option is provided, the new cell value overwrites any preceding cell 

value assignments. The ñarithavò option specifies that the new cell value will be the 

arithmetic mean of the previous and new cell values. The ñgeomavò option specifies 

that the geometric mean will be taken; note however that PARM3D will report an 

error condition if the existing or new cell value is zero or negative if this option is 

selected. For the ñmaxò option, the maximum of the preceding and new value is 

assigned to the cell, while for the ñminò option, the minimum of the preceding and 

new value is assigned to the cell. Where a cell had not been previously assigned a 

value the ñoverwriteò option is used, irrespective of the user-supplied option 

appearing at the end of the instruction. 

Zone Value Assignment 

The syntax of a zone value assignment instruction is identical to that of a layer value 

assignment instruction except for the fact that the keyword ñzoneò replaces the ñlayerò 

keyword. Some examples of zone property assignment instructions are shown below. 

zone  2 5.643 overwrite  

zone  5 layvals.ref geomav  

Examples of zone value assignment instructions. 

In the first of the options shown above, the value of 5.643 is assigned to all cells 

within the model grid which have a zonal value of 2. In the second case any cell 

possessing a zonal value of 5 is assigned a number equal to that of the cell of same 

row and column number contained within the real array stored in file layvals.ref. As 

for layer value assignment, new cell values can overwrite or modify existing cell 

values. 

Vertical Property Gradation 

Suppose that a band of material (referred to herein as a ñhydrogeological unitò or 

ñHGUò), occupying different layers at different locations within the model grid, has 

hydraulic property values that vary linearly in the vertical direction. PARM3D allows 



PARM3D  163 

 

 

the user to assign a property array to the top and bottom of that HGU; property values 

at the centres of cells comprising the HGU itself are then determined by linear vertical 

interpolation between its top and bottom. 

The figure below depicts a HGU which varies in thickness and disposition across part 

of a model domain.   

 

Vertical section through a model grid showing a hydrogeological unit occupying 

multiple model layers. (Note that, although depicted as horizontal in the above 

figure, model layers elevations, as defined in layer elevation arrays, do not need 

to be constant throughout a model domain.)   

Suppose the shaded material in the above picture is defined by zone n of the model 

domain. In implementing the vertical gradation option for zone n, the user must 

supply the names of two files (or more ï see below), each of which contains a real 

array. These arrays define hydraulic properties at the top and bottom boundaries of the 

unit (i.e. zone n). For any vertical column of the finite difference grid, the hydraulic 

property at any cell centre lying within the HGU (i.e. any cell centre lying within zone 

n) is then determined through linear interpolation (using vertical distance as the 

interpolation abscissa) between the top and the bottom of the unit within that column 

to the pertinent cell centre.  

Note the following. 

¶ Linear interpolation can take place on the basis of native or log-transformed 

property values. 

¶ If, in any particular column, the HGU is only one cell thick, the hydraulic 

property value assigned to that cell is the arithmetic or geometric mean of the 

hydraulic property value assigned to the top and bottom of the unit (because 

the cell centre is half way between the unitôs top and bottom under these 

conditions). 

¶ If a unit is non-contiguous vertically in any column, the top hydraulic property 

is assigned to the top of the uppermost HGU cell in that column and the 

bottom hydraulic property is assigned to the bottom of the lowermost HGU 



PARM3D  164 

 

 

cell in that column. Property values assigned to intermediate cell centres are 

calculated through linear vertical interpolation between these elevations in the 

usual manner; intervening cells within the column assigned to other HGUs (i.e. 

belonging to other zones) are simply ignored in the property assignment 

process. 

More than two property arrays can be supplied as a basis for gradational property 

assignment. For example three, rather than two, real array files can be provided. In this 

case the first array is used to assign notional hydraulic properties to the top of the 

HGU, while the third is used to assign hydraulic properties to the bottom of the HGU. 

The middle array is used to assign notional hydraulic properties to an elevation equal 

to the midpoint of the top and bottom of the HGU within any model column. In 

assigning a property value to a particular cell centre, linear interpolation (on the basis 

of elevation) then takes place between the pertinent two surfaces which directly 

overlie and underlie that cell. 

More than three property arrays can be provided if desired. Vertical interpolation takes 

place according to an obvious extension of the principals just outlined. 

Examples of vertical property gradation instructions follow. 

zone 2 grad_arith 2 top2.ref bot2.ref ov erwrite  

zone 3 grad_geom  4 file1.ref  file2.ref  file3.ref  file4.ref arithav  

Examples of vertical property gradation instructions. 

Each vertical property gradation instruction must begin with the ñzoneò keyword, 

followed by the integer designator of the zone to which the instruction applies. A 

ñgrad_arithò or ñgrad_geomò keyword must follow that. In the former case linear 

elevation interpolation is undertaken with respect to the native hydraulic property 

value, while in the latter case interpolation of the log of the hydraulic property value is 

undertaken (the interpolated value is then back-transformed into native property space 

before cell assignment). 

The next entry in the vertical property gradation instruction must be an integer, 

specifying the number of real array filenames to follow. The names of the actual files 

must follow that. As usual, these files are assumed to be formatted unless provided 

with an extension of ñ.reuò. 

The final entry on each line must be one of the ñoverwriteò, ñgeomavò, ñarithavò, 

ñmaxò or ñminò keywords. These have the same meanings as described above for 

zonal and layer property value assignment. 

Vertical Interpolation 

This instruction bears some similarity to the vertical gradation instruction; however, 

unlike the latter, it can apply to both zones and layers. Some examples of this 

instruction type follow. 

layer 3 interp _arith arithav  

zone 4 interp_geom arithav  



PARM3D  165 

 

 

Examples of vertical interpolation  instructions. 

If the first entry in a vertical interpolation instruction is ñlayerò, then the instruction 

pertains to the entirety of the nominated layer. Alternatively, if the first entry is 

ñzoneò, then the instruction applies to all cells within the model grid which belong to 

the identified zone. The layer or zone number to which the instruction applies is 

supplied as the second item of the line. 

For each cell belonging to the nominated layer or zone, PARM3D searches upwards in 

the respective grid column for a cell which has already been assigned a value on the 

basis of a previous instruction. Then it looks downwards within the respective column 

for a cell which has already been assigned a value. Vertical interpolation then takes 

place between these already-assigned cells to the new cell. Interpolation is linear. If 

the third item in a vertical interpolation instruction is ñinterp_arithò, then native 

property values are vertically interpolated; if it is ñinterp_geomò, the logs of 

previously assigned values are vertically interpolated (and the resulting interpolated 

value is then back-transformed prior to cell assignment). 

The following should be carefully noted. 

¶ Vertical interpolation takes place using cell elevation as the vertical abscissa. 

The elevation ascribed to a previously-assigned cell is that pertaining to its 

midpoint. The elevation ascribed to a new cell for interpolation purposes is 

also that pertaining to its midpoint. 

¶ If, for a particular cell for which vertical interpolation is required, there is no 

overlying cell which has been previously assigned a value, the cell is assigned 

a value equal to that of the nearest underlying cell to which a value has 

previously been assigned. 

¶ If, for a particular cell for which vertical interpolation is required, there is no 

underlying cell which has been previously assigned a value, the cell is 

assigned a value equal to that of the nearest overlying cell to which a value 

has previously been assigned. 

¶ If there are no overlying or underlying cells within the same grid column 

which have previously been assigned a value, PARM3D will cease execution 

with an appropriate error message. 

¶ Underlying or overlying cells from which interpolation takes place do not 

need to belong to the same zone as the cell to which interpolation takes place. 

¶ Once a value has been calculated through vertical interpolation for a new cell, 

the actual hydraulic property value assigned to that cell is calculated according 

to whether the ñoverwriteò, ñgeomavò, ñarithavò, ñmaxò or ñminò keyword is 

supplied as the last item in the vertical interpolation instruction line. 

¶ If a cell in the nominated layer or zone has already been assigned a value, this 

fact is ignored when finding overlying/underlying cells from which 



PARM3D  166 

 

 

interpolation must take place to the centre of this cell. However, as mentioned 

above, the cellôs previously-assigned value is taken into account if the 

ñgeomavò, ñarithavò, ñmaxò or ñminò keyword is supplied as the last item in 

the instruction line. 

Rezoning 

It is often necessary to alter the zone numbers to which cells belong so that subsequent 

instructions can be used to overwrite previously-assigned cell values. This may be 

necessary where new hydrogeological structure is introduced to the model grid based 

on new zone numbers, for example, where a cross-layer HGU is superimposed on 

previous layers whose properties have been determined through vertical gradation.  

Example rezoning instructions are depicted below. 

layer 1 rezone llay1.inf ignore_zero  

layer 3 rezone llay3.inf use_zero  

Examples of rezoning instructions. 

As rezoning can only be carried out on layers, the first entry in a rezoning instruction 

must be ñlayerò; a layer number must follow that. This must be followed by the name 

of a file which contains an integer array. As is the normal PARM3D protocol, this will 

be assumed to be a formatted file unless it possesses an extension of ñ.inuò. 

Two options are available for assimilation of the new zoning information contained in 

the nominated integer array. If the final entry in a rezoning instruction is ñuse_zeroò, 

all elements of the new integer array overwrite all elements of the existing zonal 

structure of the nominated layer. However if the ñignore_zeroò keyword is supplied, 

only non-zero elements of the new integer array are imported; existing zonal values 

corresponding to zero elements of the new array are thus left unaltered. 

There is no limit to the number of rezoning instructions which can be supplied; thus, 

in the course of parameterising a model domain using PARM3D, rezoning of the 

entire model grid can take place on multiple occasions if necessary. 

PARM3D Output Files 

PARM3D writes a sequence of real arrays to files nominated in the ñlayer filesò 

section of its control file. As discussed above, formatted protocol is employed unless a 

filename extension is ñ.reuò is supplied. If a property file is not required for a certain 

model layer, PARM3D can be informed of this by supplying the pertinent filename as 

ñnoneò. 

Uses of PARM3D 

PARM3D can be used to construct a complex parameterisation of a model domain 

where this parameterisation is based on assemblages of real arrays. Hydraulic 

properties can be assigned to real arrays using pilot points or zones. This can be useful 



PARM3D  167 

 

 

when calibrating such a model using PEST. In this case the batch or script file run by 

PEST as ñthe modelò will be comprised of one or more instances of PARM3D 

followed by MODFLOW and/or MT3D. One or more instances of FAC2REAL or 

INT2REAL would be run ahead of PARM3D to build hydraulic property arrays on the 

basis of pilot points or zones, before incorporating these into the model. 

If calibration of such a model were undertaken using regularised inversion, 

regularisation constraints could be added using the GENREG utility. 

See Also 

See also FAC2REAL, INT2REAL, GENREG, PESTPREP and PPKREG. 

 



PESTPREP  168 

 

 

PESTPREP 

Function of PESTPREP 

Program PESTPREP undertakes the laborious task of preparing a PEST control file 

and a PEST instruction file for a MODFLOW or MT3D run. The laborious nature of 

this work arises from the fact that, for a long transient run, it normally involves the 

processing of a great deal of observation data. However if PESTPREP is used the 

entire process is automated. On the assumption that the ñmodelò to be calibrated 

consists of MODFLOW or MT3D followed by program MOD2OBS, or of 

MODFLOW followed by BUD2SMP followed by SMP2SMP, PESTPREP prepares 

an instruction file to read the MOD2OBS or SMP2SMP output file, and builds a 

PEST control file containing measured values as listed in the ñmeasurementò bore 

sample file on which the model-generated bore sample file produced by MOD2OBS 

or SMP2SMP is based; parameters listed in a set of template files are also recorded in 

the PESTPREP-prepared PEST control file. 

Note that the use of PESTPREP is not just restricted to the use of PEST with 

MODFLOW and MT3D. Together with FEM2SMP and SMP2SMP (and maybe 

PPK2FACF and FAC2FEM for pilot-point-based parameterisation) it can also 

expedite the use of PEST with MicroFEM. 

Using PESTPREP 

PESTPREPôs use as a PEST preprocessor is predicated on the assumption that the 

model run by PEST produces as one of its output files a bore sample file in which 

model outputs are spatially and temporally interpolated to measurement dates and 

times. Recall that MOD2OBS writes a bore sample file containing model-generated 

heads (or drawdowns, etc) interpolated to the same sites and times at which field 

measurements were made, the latter being supplied in a ñmeasurementò bore sample 

file. SMP2SMP, when run following BUD2SMP, lists model inflows/outflows 

interpolated to the measurement dates and times of these same quantities. SMP2SMP 

when run following FEM2SMP performs a similar task in the MicroFEM context. It is 

the role of PESTPREP to write an instruction set by which the MOD2OBS or 

SMP2SMP-generated bore sample file can be read, and to generated a PEST control 

file whose corresponding observation values are extracted from the ñmeasurementò 

bore sample file. 

PESTPREP begins execution with the prompts:- 

 Enter name of observation bore sample file:  

 Enter name of    model    bore sample file:  

The first is the bore sample file containing measured data. The second is the bore 

sample file generated by MOD2OBS or SMP2SMP as part of the model. If a filename 

file [ files.fig ] is present in the current directory, the first of the above prompts is 

accompanied by a default bore sample filename which can be accepted through simply 

pressing the <Enter> key. Note that it is essential that the above bore sample files be 



PESTPREP  169 

 

 

ñpairedò in the sense that the latter is generated by MOD2OBS or SMP2SMP on the 

basis of the former as part of the composite model run. 

As already stated, PESTPREP writes an instruction set by which the model-generated 

bore sample file can be read, as well as a PEST control file. The production of both of 

these files entails the generation of observation names. PESTPREP generates 

observation names in one of three ways, depending on the userôs choice. PESTPREP 

prompts:- 

 Use numbers or bore identifiers for observation names?  [n/b]:  

If ñnò is selected, observations are named from 1 to 99999999 in order of their 

appearance in the MOD2OBS or SMP2SMP-generated bore sample file (which will 

also be the order of their appearance in the measurement bore sample file upon which 

the MOD2OBS or SMP2SMP-generated bore sample file is based).  Alternatively, 

select ñbò for greater ease in relating observation names to actual measurements. In 

that case PESTPREP prompts:- 

 Use first n or last n characters of bore identifier?  [f/l]:  

where n is a number from 3 to 17. If ñf ò is typed in response to the above prompt, 

PESTPREP generates observation names by taking the first n characters of the bore 

identifier and affixing the suffix ñ_mmò to its name, where mm signifies the mmôth 

sample pertaining to that bore as read from the MOD2OBS or SMP2SMP-generated 

bore sample file. PESTPREP determines n in the above prompt through counting the 

maximum number of observations pertaining to any bore and thus determining how 

many of the twenty characters available in an observation name can be assigned to 

sample numbering in this fashion. If this method of assigning observation names does 

not result in a unique set of names due to the fact that different bore identifiers have 

the same first n letters in common, PESTPREP informs the user of this. He/she is then 

prompted for an alternative method of observation name generation. 

If the response to the above prompt is ñl ò, PESTPREP uses the last n characters of 

each bore identifier in conjunction with the measurement sequence numbering scheme 

to determine observation names. Once again, if this methodology does not result in a 

set of unique observation names PESTPREP will not proceed, requesting instead that 

the user employ an alternative scheme for observation name generation. 

PESTPREPôs next prompt is:- 

 Enter name for instruction file:  

Once it is supplied with this name (preferably with an extension of ñ.ins ò) 

PESTPREP generates the instruction set by which the MOD2OBS or SMP2SMP-

generated bore sample file can be read. Then it gathers the names of the various 

parameters involved in the current parameter estimation problem by reading all 

template files involved in the current PEST run. It prompts:- 

 How many template files are there?  

 Enter name for template file # 1:  

 Enter name of corresponding input file:  



PESTPREP  170 

 

 

 Enter name for template file # 2:  

 Enter name of corresponding input file:  

  etc.  

Once it has read the template files, PESTPREP prompts for the name of the PEST 

control file which it must write:- 

 Enter name for output PEST control file:  

and finally for the command which must be used in the ñmodel command lineò 

section of this file:- 

 Ent er command which PEST will use to run model:  

It then writes the PEST control file. 

PESTPREP observes a number of conventions with respect to the assigning of 

parameter groups, initial values and parameter value bounds when writing the PEST 

control file. These conventions are as follows:- 

¶ If the name of a parameter begins with a letter of the alphabet it is assigned to a 

parameter group whose name is that letter. Thus parameters prop1, prop2 and 

prop3 are assigned to a parameter group whose name is p. However if a parameter 

name begins with any other character, it is assigned to a group named other. 

¶ Parameters whose names begin with v (for vcont), t (for transmissivity), h (for 

hydraulic conductivity), p (for permeability) or k (for konductivity) are 

logarithmically transformed. They are assigned an initial value of 1.0, a lower 

bound of 10
-10

, and an upper bound of 10
10

. 

¶ Parameters whose names begin with s (for storage coefficient or specific yield) are 

also logarithmically transformed. They are assigned an initial value of 0.1, a lower 

bound of 10
-10

, and an upper bound of 0.3 

¶ All other parameters are assigned an initial value of 1.0, a lower bound of ï10
10

, 

and an upper bound or 10
10

. 

Note also that, on the assumption that r stands for recharge, the derivative increment 

for members of parameter group r is calculated using the rel_to_max method. 

The user will probably wish to alter many of these settings once the PEST 

control file has been created.  

PESTPREP assumes that only one instruction file is required by the inversion process, 

this being the one that it has written itself to read the MOD2OBS or SMP2SMP-

generated bore sample file, of which it also knows the name.  

Once PESTCHEK has written the PEST control file, the status of the PEST input 

dataset can be immediately checked using program PESTCHEK. Alterations can be 

made to that file using a text editor. 



PESTPREP  171 

 

 

Note that when using PESTPREP, or any other member of the Groundwater Data 

Utilities Suite, the user can ñbacktrackò in execution by responding to any prompt by 

simply typing ñEò or ñeò, followed by <Enter>; ñeò stands for ñescapeò. 

Uses of PESTPREP 

PESTPREP automates most of the laborious work required in the preparation of a 

PEST run used for the calibration of a MODFLOW, MT3D, MicroFEM, or other 

model. Because it can rapidly process the large amounts of data that often accompany 

transient model calibration, it can accomplish in seconds that which would take hours 

to accomplish in any other way. 

See Also 

See also FEM2SMP, MOD2OBS, SMP2DAT and SMP2SMP. 

 



PESTPREP1  172 

 

 

PESTPREP1 

Function of PESTPREP1 

The function of PESTPREP1 is identical to that of PESTPREP. That is, it builds a 

complete PEST input dataset based on an observed bore sample file and its model-

generated equivalent, together with parameters cited in one or more template files. 

However it is built for use in conjunction with PESTPREP2, the function of the latter 

program being to add more observations to the PEST input dataset. These 

observations may be based on the same bores as those used by PESTPREP1, but 

reference different data types. PESTPREP1 therefore provides an observation naming 

convention that allows these different observations types to be distinguished from 

each other; it also allows the user to assign observations to an observation group name 

of his/her choosing instead of the default observation name used by PESTPREP. 

Using PESTPREP1 

Use of PESTPREP1 is identical to that of PESTPREP, except for a few minor 

changes. These are now outlined. 

PESTPREP1 names observations in a slightly different manner to that in which 

PESTPREP names observations. For PESTPREP1 each observation name must begin 

with a user-supplied prefix of eight characters or less. The remainder of the name is 

formed in the same manner as for PESTPREP, i.e. using sequential numbers, or bore 

identifiers followed by the observation number associated with each bore. The 

PESTPREP1 naming convention is useful where the PEST input dataset includes 

more than one observation type associated with each bore (with these additional 

observations being added to the PESTPREP1-generated PEST input dataset by 

PESTPREP2), for the prefix then distinguishes one observation type from another. 

If the naming-by-bore-identifier option is selected, PESTPREP1, like PESTPREP, 

asks:- 

Use first n or last n character s of bore identifier?  [f/l]:  

where n is calculated so that the observation name (including prefix and bore 

observation number) fits within the 20 character observation name limit imposed by 

PEST. It is possible that n in the above prompt will exceed the 10 character limit 

allowed for bore identifiers. If this is the case, the prompt is unnecessary of course. 

However it is retained in case, at some future date, the 10 character bore identifier 

limit is lifted. 

The other feature that distinguishes PESTPREP1 from PESTPREP is the fact that 

PESTPREP1 assigns observations to an observation group whose name is specified by 

the user, rather than to the group ñobsgroupò used by PESTPREP. This measure, too, 

facilitates the addition of other observation types by PESTPREP2; these other 

observation types should naturally be assigned to different observation groups. 



PESTPREP1  173 

 

 

Uses of PESTPREP1 

Uses of PESTPREP1 are the same as those of PESTPREP. However a PESTPREP1-

generated PEST control file is more amenable to the later addition of further 

observation data by PESTPREP2. 

See Also 

See also, PESTPREP, PESTPREP2, MOD2OBS. 



PESTPREP2  174 

 

 

PESTPREP2 

Function of PESTPREP2 

PESTPREP2 is designed to be used in conjunction with PESTPREP1. It allows extra 

observations to be added to an existing PEST input dataset, rather than the creation of 

a new PEST input dataset (which is the job of PESTPREP1). As for PESTPREP and 

PESTPREP1, observations are assumed to reside in a bore sample file; model-

generated equivalents to observations (produced by MOD2OBS or SMP2SMP) are 

also assumed to reside in a bore sample file. 

Using PESTPREP2 

Use of PESTPREP2 is almost identical to that of PESTPREP1 (and hence to 

PESTPREP). A typical set of prompts and responses is shown below. 

 Enter name of observation bore sample file: obs erv.smp  

 Enter name of    model    bore sample file: model.smp  

 

 Enter prefix for new observation names (8 chars or less): conc_  

 Use numbers or bore identifiers for rest of observation names?  [n/b]: b 

 Use first 13 or last 13 characters of bore identifie r?  [f/l]: f  

 Enter name for new observation group: concs  

 

 Enter name for instruction file: concs.ins  

 -  file concs.ins written ok.  

 

 Enter name of existing PEST control file: case1.pst  

 Enter name for new PEST control file: case2.pst  

 -  file case1 .pst re ad ok.  

 -  file case2 .pst written ok.  

Prompts issued by PESTPREP2 depart from those issued by PESTPREP1 where the 

former program asks for the name of an existing PEST control file. In contrast, at this 

stage of its operations PESTPREP1 prompts for the names of template files from 

which it reads parameter names. PESTPREP2 does not add any parameters to an 

existing PEST input dataset. However it adds all observations formulated from the 

model bore sample file which it reads (the ñmeasured valuesò of which reside in the 

complimentary observation bore sample file). It also adds the new instruction file, 

together with the name of the model output file which these instructions are designed 

to read (i.e. the ñmodel bore sample fileò whose name is requested in the second of the 

above prompts) to the PEST input dataset, as well as the observation group to which 

these new observations are assigned. All other components of the existing PEST input 

dataset are left unchanged. (It is thus the userôs responsibility to add any new 

commands, such as that required to run MOD2OBS or SMP2SMP, to the model batch 

file.) 

It goes without saying that the PEST input dataset produced as an outcome of 

PESTPREP2 execution should be checked using the PESTCHEK utility before PEST 

is run. 



PESTPREP2  175 

 

 

Like PESTPREP and PESTPREP1, PESTPREP2 assigns a weight of 1 to all new 

observations. The ADJOBS utility can be employed to modify these weights, this 

being especially useful if it is desired that weights be a function of observed data 

value. PEST utilities such as the PWTADJ1 utility can also be of use in the 

assignment of differential weights to the various observation groups involved in the 

parameter estimation process. 

Uses of PESTPREP2 

As stated above, PESTPREP2 is a partner to PESTPREP1. Collectively they can be 

used to create a complex PEST input dataset comprised of many different observation 

types. 

See Also 

See also PESTPREP, PESTPREP1, MOD2OBS and SMP2SMP.  



PMP2INFO  176 

 

 

PMP2INFO 

Function of PMP2INFO 

PMP2INFO tabulates the amount of water pumped between two user-specified times 

from a list of user-specified bores. It obtains the information which it needs to 

calculate pumped volumes by reading a bore pumping file. Where the beginning or 

end of the user-supplied time interval does not coincide with sampling times recorded 

in the bore pumping file, PMP2INFO linearly interpolates data contained in this file to 

the user-specified time-interval endpoints. It writes its output data (including bore 

coordinates) to a bore information file. 

Using PMP2INFO 

Program PMP2INFO will not run unless a settings file (settings.fig ) is present 

within the directory from which it is invoked. As discussed in Section 2.19 of Part A 

of this manual, a settings file determines the manner in which dates are represented by 

the Groundwater Data Utilities. 

Upon commencement of execution PMP2INFO prompts: 

 Enter name of bore coordinates file:  

Enter the appropriate filename. If PMP2INFO located a filename file (files.fig ) 

within the current directory, a default bore coordinates filename may appear in the 

above prompt. In this case you should either press <Enter> to accept the default, or 

supply another filename yourself. Note that there is no need for the bore coordinates 

file read by PMP2INFO to include the optional layer number column; if this column is 

present, it is ignored. 

PMP2INFO then asks: 

 Enter name of bore listing file:  

The bore listing file should contain that subset of the bores cited in the bore 

coordinates file for which pumping figures are required. If pumping figures are 

required for all bores cited in the bore coordinates file, the latter can be resubmitted as 

a bore listing file; PMP2INFO only reads the first column of a bore listing file. 

Next PMP2INFO prompts for the name of the bore pumping file which holds the data 

from which it must calculate individual pumping volume figures. See Section 2.6 of 

Part A of this manual for the specifications of a bore pumping file. PMP2INFO 

prompts: 

 Enter name of bore pumping file:  

Supply the appropriate filename. If a filename file holding the name of a bore 

pumping file is present in the current directory, PMP2INFO includes the default 



PMP2INFO  177 

 

 

filename obtained from this file in the above prompt. In this case you should either 

press <Enter> to accept the default or type in the correct filename. 

The time interval over which pumped volumes for each bore are to be calculated must 

next be supplied. The PMP2INFO prompts are: 

 Enter time interval starting date  [dd/mm/yyyy]:  

 Enter time interval starting time  [hh:mm:ss]:  

 Enter time interval finishing date [dd /mm/yyyy]:  

 Enter time interval finishing time [hh:mm:ss]:  

(Note that the date representation format depends on the contents of the settings file 

settings.fig .) If the date and time corresponding to the beginning or end of the 

time interval does not coincide with a sampling date and time as recorded in the bore 

pumping file, PMP2INFO carries out a linear interpolation of data contained in the 

latter file to the user-specified interval beginning or end point. The user-specified time 

interval can be of any duration; however precision may be lost if the length of the 

interval is very small relative to the time between readings. Note also that if the start 

of the user-specified time interval precedes the first pumpage reading for a particular 

bore and/or the end of the time interval postdates the last pumpage figure recorded for 

a particular bore in the bore pumping file, PMP2INFO will be unable to calculate the 

amount of water pumped from that bore during the interval. 

PMP2INFO writes its calculated pumped volumes to a bore information file whose 

name must be specified in response to the prompt: 

 Enter name for output bore information file:  

Then PMP2INFO prompts:  

 Record any uninterpolated bores to output file?  [y/n]:  

If you respond to this prompt with ñnò, PMP2INFO will omit from the bore 

information file which it generates any bores for which it cannot calculate the required 

extraction volume during the user-supplied time interval. Otherwise it will include 

these bores in its output file, denoting its inability to perform the required calculation 

by one of a set of codes replacing the calculated pumped volume figures. Thus if the 

beginning of the user-supplied pumping interval precedes the first pumpage reading 

for a bore as recorded in the bore pumping file, PMP2INFO writes the text 

ñbefore_first_sample ò in place of the pumped volume for that bore. If the end 

of the user-defined pumpage interval postdates the last pumping reading for a 

particular bore, the extracted volume for that bore is recorded as 

ñafter_la st_sample ò. If a bore cited in the bore listing file was not found in the 

bore pumping file, its extracted volume is recorded as ñnot_in_pumping_file ò. 

The following figure shows part of a bore information file generated by PMP2INFO. 

Note that borehole coordinates (read from the bore coordinates file) comprise the 

second and third columns of a PMP2INFO-generated bore information file. 

 



PMP2INFO  178 

 

 

Extract from a bore information file generated by PMP2INFO. 

Uses of PMP2INFO 

PMP2INFO can assist in the undertaking of simple water balance studies over various 

parts of an aquifer. For example calculations of pumped volumes over dry periods 

where aquifer recharge is expected to be zero, supplemented by measured water level 

falls in observation bores over the same period (together with some simple 

assumptions concerning aquifer inflow and outflow) can lead to an estimate of aquifer 

specific yield. Another non-modelling application, made possible by the fact that the 

bore information file generated by PMP2INFO provides bore coordinates in its second 

and third columns, is the posting of pumping information on a map of the study area, 

perhaps with symbol size proportional to extracted volume. 

In the modelling context, the bore information file generated by PMP2INFO can be 

used by program PT2ARRAY to assign pumping rates to model cells containing 

bores. Thus the joint use of PMP2INFO and PT2ARRAY can greatly facilitate the 

time-consuming and laborious task of incorporating borehole pumping data into a 

groundwater model. 

See Also 

See also PMPCHEK, PT2ARRAY. 

 40236       426276.0160  7256191.549   0.00000  

 40240       423156.2920  7256758.984  after_last_sample  

 40241       42324 2.3010  7256451.838  after_last_sample  

 40402       430721.1320  7254368.971   0.00000  

 40403       430497.9760  7254091.023    61.935  

 40407       431574.6490  7252097.156    37.793  

 40409       430970.8520  7254954.668    26.196  

 40413       430467.7110  7254521.561    2.6957  

 40414       430299.8120  7254428.439    16.998  

 40416       431617.7600  7254711.861    194.06  

 40418       431028.5810  7254647.337  after_last_sample  

 40423       429652.7360  7254701.978    7.1839  

 40429       431812.9540  725498 9.651   0.00000  

 40431       430664.1160  7254553.345    38.693  

 40433       430718.1960  7254953.401    3.9957  

 40435       430800.9390  7255261.436    114.43  

 40437       429679.8910  7254886.556    4.0675  

 40440       433024.5250  7254072.732    43.672  

 40806       423429.9890  7252977.065   0.00000  

 40810       423390.7910  7254976.133    9.6186  

 40841       422804.9000  7254326.931   0.00000  

 40842       423279.0220  7254883.235   0.97154  

 40844       423878.6440  7253071.716   0.00000  



PMPCHEK  179 

 

 

PMPCHEK  

Function of PMPCHEK 

PMPCHEK checks the integrity of a bore pumping file, reading the file in its entirety 

and writing any errors it finds to the screen. 

Using PMPCHEK 

Program PMPCHEK will not run unless a settings file (settings.fig ) is present 

within the directory from which it is invoked. As discussed in Section 2.19 of Part A 

of this manual, a settings file determines the manner in which dates are represented by 

the Groundwater Data Utilities. 

PMPCHEK begins execution with the prompt: 

 Enter name of bore pumping file:  

to which you should respond with the appropriate filename. If a filename file 

(files.fig ) holding the name of a bore pumping file is present in the current 

directory, PMPCHEK includes the default filename obtained from this file in the 

above prompt. In this case you should either press <Enter> to accept the default or 

type in the correct filename. 

PMPCHEK then reads the nominated file, writing any errors that it finds to the screen 

(up to a maximum of 40 errors). It checks that the following conditions are met in the 

bore pumping file: 

¶ That every line contains sufficient items, and that each date, time and pumping 

figure can be read correctly. 

¶ That all dates and times are valid. 

¶ That data for all bores are sequential, and that the beginning of one time interval 

coincides with the end of the previous interval for subsequent entries citing the 

same bore. 

¶ That all bore identifiers are of 10 characters or less in length. 

Uses of PMPCHEK 

Those Groundwater Data Utility programs which obtain part of their data 

requirements from a bore pumping file carry out rudimentary error checking as they 

read the file; however their error checking is not exhaustive. Furthermore, on 

encountering an error condition they usually write the error (and line number) to the 

screen and then cease execution. Thus if a bore pumping file has more than one error 

the next error will go undetected until the first error is rectified and the utility is run 



PMPCHEK  180 

 

 

again. The detection (and rectification) of errors in this ñone-by-oneò fashion can 

become time-consuming and frustrating if a bore pumping file has more than just a 

few errors. 

PMPCHEK was written to record and report all errors at once. When writing errors to 

the screen it reports the file line number on which each error condition occurs so that a 

user may easily locate and rectify these errors. Note that a user can redirect 

PMPCHEK screen output to a file (using the ñ>ò symbol) for a more permanent 

record of the errors. 

It is strongly recommended that PMPCHEK be used to establish the integrity of a bore 

pumping file before the latter is used by any of the Groundwater Data Utilities. 

See Also 

See also MKPMP1, PMP2INFO. 

 



PPCOV  181 

 

 

PPCOV 

Function of PPCOV 

PPCOV reads a pilot points file and a geostatistical structure file. On the assumption 

that each pilot point represents a model parameter, it writes a covariance file for these 

parameters based on geostatistical structures pertaining to various sets of these points. 

Points within the pilot points file can belong to one such set, or many different sets, 

each potentially being characterised by a different structure. 

Using PPCOV 

PPCOV commences execution by prompting for the name of a pilot points file.  

 Enter name of pilot points file:  

If the name of such a file is cited in a files.fig file contained within the current working 

directory, this filename will appear with the above prompt; it can then be accepted by 

simply pressing the <Enter> key. 

The format of a pilot points file is described in part A of this manual. As noted there, 

the first column of a pilot points file contains pilot point names (10 characters or less 

in length). The next two columns contain pilot point eastings and northings. Following 

these are zone numbers, followed by the values assigned to pilot points. PPCOV 

ignores data provided in the last column of this file. However it uses zone numbers to 

subdivide pilot points into groups. Pilot points within each group are assumed to be 

characterised by a single geostatistical structure. There is assumed to be no statistical 

dependence between groups; thus covariances between pilot point parameters from 

different groups are assumed to be zero. 

The names of parameters pertaining to pilot points are assumed to be either the same 

as the names of the pilot points themselves, or to be derived from pilot point names by 

addition of a prefix. See below. 

PPCOV next prompts:- 

 Enter minimum allowable separa tion for points in same zone:  

This allows the user to check that no two pilot points within the same zone are closer 

than he/she thinks they are, or even inadvertently superimposed. If any two points are 

closer than the minimum separation supplied in response to the above prompt, 

PPCOV will list the offending points and then cease execution. In most cases the 

appropriate response to the above prompt is zero. 

PPCOVôs next prompt is:- 

 Enter name of structure file:  

The format of a structure file is presented in part A of this manual. It contains 

specifications for one or a number of geostatistical structures, each of which can 

comprise a nugget and one or more nested variograms (which may be anisotropic if 



PPCOV  182 

 

 

desired). Each structure has a name; one such structure is assigned to each zone 

identified in the pilot points file in response to the following sequence of prompts 

issued by PPCOV:- 

 Enter structu re to use for pilot point zone 5 :  

 Enter structu re to use for pilot point zone 6 :  

 etc  

Zone numbers are as supplied in the pilot points file, and are listed in increasing order 

in the above series of prompts. In response to each of these prompts, the user should 

supply the name of a geostatistical structure whose specifications are provided in the 

structure file. 

PPCOVôs final two prompts are:- 

 Enter name for output matrix file:  

 Enter pilot point prefix for parameter name (<Enter> if none):  

The name of a file to which the covariance matrix will be written is supplied in 

response to the first of the above prompts. The prefix by which pilot point names are 

converted to parameter names is supplied in response to the second of the above 

prompts. 

The format of the file to which the covariance matrix is written is the same as that 

used by PEST matrix manipulation utiliti es. See either the PEST manual or the 

addendum to the PEST manual for details. 

Uses of PPCOV 

PPCOV3D can be used for building a C(p) (i.e. a parameter covariance) matrix for the 

use of PEST utilities such as those belonging to the PREDVAR and PREDUNC suite 

of programs. As such, it furnishes the basis for calculation of the contribution to 

predictive error variance and/or predictive uncertainty made by the inability of the 

model calibration process to capture all system hydraulic property detail. In most 

modelling contexts this is the dominant contributor to model predictive 

error/uncertainty. 

The covariance matrix written by PPCOV3D can also be used by PEST itself. It can 

be ascribed to an observation group (including a prior information group) used in 

Tikhonov regularization. Thus if heterogeneity is introduced to the model domain 

through the inversion process, its introduction is in accordance with the underlying 

parameter variogram(s) inasmuch as this is not violated by measurements used in the 

calibration process. 

See Also 

See also PPCOV_SVA, PARCOV, PPCOV3D, PPCOV_SVA, PPK2FAC, 

FIELDGEN and GENREG. 



PPCOV_SVA  183 

 

 

PPCOV_SVA 

Function of PPCOV_SVA 

PPCOV_SVA (ñSVAò stands for ñspatially varying anisotropyò) performs a similar 

role to that of the PPCOV utility in that it builds a covariance matrix for parameters 

which are associated with a set of two-dimensional pilot points. However it does not 

rely on an assumption of geostatistical stationarity. In fact, variogram properties can 

be different at the location of every pilot point. Construction of the covariance matrix 

in such a context of spatially varying geostatistical properties can only be 

approximate. Nevertheless the covariance matrix produced by PPCOV_SVA may 

prove useful in implementing regularisation, and in generation of random values for 

pilot point parameters where pilot points are used to represent spatial hydraulic 

property heterogeneity in a model domain of highly variable geology. 

Using PPCOV_SVA 

Unlike PPCOV and PPCOV3D, PPCOV_SVA does not read a structure file in order 

to obtain the properties of a geostatistical structure that is assumed to characterize 

hydraulic property heterogeneity throughout a model domain. Recall that a 

geostatistical structure can include one or a number of variograms; these are then 

nested to characterize total spatial variability. Instead, a single variogram type is 

assumed to prevail throughout the model domain. However its sill, nugget, range, 

anisotropy and anisotropy direction can vary on a pilot-point-by-pilot-point basis. 

Pilot point specific nuggets can also be employed. 

PPCOV_SVA reads a ñpilot points statistical specificationò file. This resembles a 

normal pilot points file. However it contains extra data columns; it can also optionally 

contain a header line at its top. An example of the first part of a pilot points statistical 

specification file is shown below. 

point      x      y   zone nugget   sill       a         hanis      bearing  

ppt1     35.0   765.0   1  0.5      0.8       350.0       4.0        45  

ppt2     95.0   765 .0   1  0.5      0.8       350.0       4.0        45  

ppt3    155.0   765.0   1  0.5      0.8       350.0       4.0        45  

ppt4    215.0   765.0   1  0.5      0.8       350.0       4.0        45  

ppt5    275.0   765.0   1  0.5      0.8       350.0       4 .0        90  

ppt6    335.0   765.0   1  0.0      0.8       350.0       4.0        90  

ppt7    395.0   765.0   1  0.0      0.8       350.0       4.0        90  

ppt8    455.0   765.0   1  0.0      0.5       350.0       4.0        90  

ppt9     35.0   705.0   1  0.0      0.5       150.0       0.0         0  

ppt10    95.0   705.0   1  0.0      0.5       150.0       0.0         0  

ppt11   155.0   705.0   1  0.0      0.5       150.0       0.0         0  

ppt12   215.0   705.0   1  0.0      0.3       150.0       0.0         0 

ppt13   275.0   705.0   2  0.0      0.3       150.0       0.0         0  

ppt14   335.0   705.0   2  0.0      0.3       150.0       0.0         0  

ppt15   395.0   705.0   2  0.0      0.3       150.0       0.0         0  

etc  

The first part of a pilot poin ts statistical specification file. 



PPCOV_SVA  184 

 

 

Column headers can be provided as the first line of the pilot points statistical 

specification file. This line is optional; if it supplied, PPCOV_SVA does not read it. It 

exists purely for the benefit of the user. 

The first four columns of a pilot points statistical specification file are the same as 

those of a normal pilot points file. They contain, respectively, pilot point identifiers 

(of 12 characters or less), pilot point eastings and northings, and pilot point zone 

numbers. The ensuing columns must contain variogram specifications; the correct 

order of these columns is shown in the above example. First comes the nugget; then 

come the variogram sill, the ñaò value of the variogram (this is proportional to its 

range), and then the horizontal anisotropy and anisotropy bearing (with respect to 

north) of the variogram. See descriptions of the geostatistical structure file provided 

elsewhere in this documentation for a full explanation of these variables. Note that if 

anisotropy is greater than 1.0, then the variogram ñaò value describes the range of the 

variogram in the direction of greatest variogram elongation; meanwhile the bearing of 

anisotropy points in this same direction. 

If pilot point parameters are log-transformed, then all of the variogram characteristics 

specified in the pilot points statistical specification file must pertain to the log (to base 

10) of parameter values. PPCOV_SVA has no knowledge of the transformation status 

of pilot point parameters; hence it does not check this. 

Use of PPCOV_SVA is very similar to that of PPCOV, except for the requirement 

that a pilot points statistical specification file be provided instead of a pilot points file 

and a geostatistical structure file. Prompts and typical PPCOV_SVA responses are as 

follows. 

 Enter name of pilot points statistical specs file: hk_stat.pts  

 Skip a line a the top of this file?  [y/n]: y  

  -  data for 103 pilot points read from pilot points file hk_stat.pts  

 

 Enter minimum allowable separation for points  in same zone: 0.0  

 

 Is overall variogram spherical, exponential or Gaussian? [s/x/g]: s  

 

 Enter name for output matrix file: cov.dat  

 Enter pilot point prefix for parameter name (<Enter> if none): k_  

 

 Filling covariance matrix....  

 Using SVD to assure po sitive definiteness of matrix....  

 -  file temp.dat written ok.  

The algorithmic basis of PPCOV_SVA is very simple. The total variance assigned to 

any pilot point is the sum of the nugget and the sill that are ascribed to that pilot point. 

If two pilot points lie in separate zones, then their covariance is zero. If they lie in the 

same zone, a covariance between them is calculated using the variogram 

characteristics pertaining to both pilot points; the lesser of these covariances is then 

adopted. . Positive definiteness of the resulting matrix is then guaranteed by subjecting 

it to singular value decomposition and rebuilding it after equating the V matrix to the 

U matrix. 



PPCOV_SVA  185 

 

 

Uses of PPCOV_SVA 

The covariance matrix produced by PPCOV_SVA can be used in conjunction with the 

PEST ADDREG1 utility to implement preferred value regularisation in areas of 

complex geology. It can also be used with the PEST RANDPAR utility, and with 

PLPROC, to generate random values for pilot point parameters. 

See Also 

See also PPCOV, PPCOV3D, PPCOV_SVA and PARCOV. 

 



PPCOV3D  186 

 

 

PPCOV3D 

Function of PPCOV3D 

PPCOV3D reads a three-dimensional pilot points file and a geostatistical structure 

file. On the assumption that each pilot point represents a model parameter, it writes a 

covariance file for these parameters based on geostatistical structures pertaining to 

various sets of these points. Points within the pilot points file can belong to one such 

set, or many different sets, each potentially being characterised by a different 

structure. 

Using PPCOV3D 

PPCOV3D commences execution by prompting for the name of a pilot points file.  

 Enter name of pilot points file:  

If the name of such a file is cited in a files.fig file contained within the current working 

directory, this filename will appear with the above prompt; it can then be accepted by 

simply pressing the <Enter> key. 

The pilot points file must be of the three-dimensional type. The first column of this 

file must contain pilot point names (10 characters or less in length). The next three 

columns must contain pilot point eastings, northings and elevations. Following these 

is a column of zone numbers, followed by another column containing the values 

assigned to pilot points. PPCOV3D ignores data provided in this last column. 

However it uses zone numbers to subdivide pilot points into groups. Pilot points 

within each group are assumed to be characterised by a single geostatistical structure. 

There is assumed to be no statistical dependence between groups; thus covariances 

between pilot point parameters from different groups are assumed to be zero. 

The names of parameters pertaining to pilot points are assumed to be either the same 

as the names of the pilot points themselves, or to be derived from pilot point names by 

addition of a prefix. See below. 

PPCOV3Dôs next prompt is:- 

 Enter name of structure file:  

The format of a structure file is presented in part A of this manual. It contains 

specifications for one or a number of geostatistical structures, each of which can 

comprise a nugget and one or more nested variograms (which may be anisotropic if 

desired). Each structure has a name; one such structure is assigned to each zone 

identified in the pilot points file in response to the following sequence of prompts 

issued by PPCOV3D:- 

 Enter structu re to use for pilot p oint zone 5 :  

 Enter structu re to use for pilot point zone 6 :  

 etc  



PPCOV3D  187 

 

 

Zone numbers are as supplied in the pilot points file, and are listed in increasing order 

in the above series of prompts. In response to each of these prompts, the user should 

supply the name of a geostatistical structure whose specifications are provided in the 

structure file. Each structure that is named through responses to the above prompts 

must be of the three-dimensional type. Thus the variograms which it employs must 

cite the ang1, ang2, ang3, a_hmax, a_hmin and a_vert parameters which characterize 

variograms of this type. 

PPCOV3Dôs final two prompts are:- 

 Enter name for output matrix file:  

 Enter pilot point prefix for parameter name (<Enter> if none):  

The name of a file to which the covariance matrix will be written is supplied in 

response to the first of the above prompts. The prefix by which pilot point names are 

converted to parameter names is supplied in response to the second of the above 

prompts. 

The format of the file to which the covariance matrix is written is the same as that 

used by PEST matrix manipulation utilities. See either the PEST manual or the 

addendum to the PEST manual for details. 

Uses of PPCOV3D 

PPCOV3D can be used for building a C(p) (i.e. a parameter covariance) matrix for the 

use of PEST utilities such as those belonging to the PREDVAR and PREDUNC suite 

of programs. As such, it furnishes the basis for calculation of the contribution to 

predictive error variance and/or predictive uncertainty made by the inability of the 

model calibration process to capture all system hydraulic property detail. In most 

modelling contexts this is the dominant contributor to model predictive 

error/uncertainty. 

The covariance matrix written by PPCOV3D can also be used by PEST itself. It can 

be ascribed to an observation group (including a prior information group) used in 

Tikhonov regularization. Thus if heterogeneity is introduced to the model domain 

through the inversion process, its introduction is in accordance with the underlying 

parameter variogram(s) inasmuch as this is not violated by measurements used in the 

calibration process. 

See Also 

See also PARCOV, PPCOV, PPCOV_SVA, PPK2FAC, FIELDGEN and GENREG. 



PPCOV3D_SVA  188 

 

 

PPCOV3D_SVA 

Function of PPCOV3D_SVA 

PPCOV3D_SVA (ñSVAò stands for ñspatially varying anisotropyò) performs a 

similar role to that of the PPCOV3D utility in that it builds a covariance matrix for 

parameters which are associated with a set of three-dimensional pilot points. However 

it does not rely on an assumption of geostatistical stationarity. In fact, variogram 

properties can be different at the location of every pilot point. Construction of the 

covariance matrix in such a context of spatially varying geostatistical properties can 

only be approximate. Nevertheless the covariance matrix produced by 

PPCOV3D_SVA may prove useful in implementing regularisation, and in generation 

of random values for pilot point parameters where pilot points are used to represent 

spatial hydraulic property heterogeneity in a model domain of highly variable geology. 

Using PPCOV3D_SVA 

Unlike PPCOV and PPCOV3D, but similarly to PPCOV_SVA, PPCOV3D_SVA 

does not read a structure file in order to obtain the properties of a geostatistical 

structure that is assumed to characterize hydraulic property heterogeneity throughout a 

model domain. Recall that a geostatistical structure can include one or a number of 

variograms; these are then nested to characterize total spatial variability. Instead, a 

single variogram type is assumed to prevail throughout the model domain. However 

its sill, nugget, three-dimensional ranges and three-dimensional anisotropy directions 

can vary on a pilot-point-by-pilot-point basis. Pilot point specific nuggets can also be 

employed. 

PPCOV3D_SVA reads a ñthree-dimensional pilot points statistical specificationò file. 

This resembles a normal pilot points file. However it contains extra data columns; it 

can also optionally contain a header line at its top. An example of the first part of a 

three-dimensional pilot points statistical specification file is shown below. 

point_id  x     y     z   zone  nugget sill a_hmax  a_hmin  a_vert ang1   ang2  ang3  

1_1     35.0   765.0  10.0   1  0.0   0.5    10 0.0    30.0   10.0  20.0    0.0   0.0  

1_2     95.0   765.0  10.0   1  0.0   0.5     100.0    30.0   20.0  20.0    0.0   0.0  

1_3    155.0   765.0  10.0   1  0.0   0.5     100.0    30.0   10.0  30.0   10.0   0.0  

1_4    215.0   765.0   20.0   1  0.0   0.5     30.0    30.0   10.0  30.0   10.0   0.0  

1_5    275.0   765.0   20.0   1  0.0   0.5     30.0    10.0   20.0  80.0   10.0   0.0  

1_6    335.0   765.0  25.0   1  0.0   0.5     30.0    10.0   10.0  80.0   0.0    0.0  

1_7    395.0   765.0   25.0   2  0.0   0. 25    30.0    10.0   10.0  135 .0  20.0   0.0  

1_8    455.0   765.0   30.0   2  0.0   0. 25   200.0    10.0   10.0  135 . 0  20.0   0.0  

1_9     35.0   705.0   30.0   2  0.0   0. 25   200.0    30.0   10.0  135 .0  20.0   0.0  

1_10    95.0   705.0   30.0   2  0.0   0. 25   200.0    30.0   20.0  90.0   20.0   0.0  

1_11   155.0   705.0   40.0   2  0.0   0. 25   200.0    30.0   20.0  90.0   20.0   0.0  

etc  

The first part of a three-dimensional pilot points statistical specification file. 

Column headers can be provided as the first line of the three-dimensional pilot points 

statistical specification file. This line is optional; if it is supplied, PPCOV3D_SVA 

does not read it. It exists purely for the benefit of the user. 



PPCOV3D_SVA  189 

 

 

The first five columns of a three-dimensional pilot points statistical specification file 

are the same as those of a normal three-dimesional pilot points file. They contain, 

respectively, pilot point identifiers (of 12 characters or less), pilot point eastings, 

northings, elevations, and pilot point zone numbers. The ensuing columns must 

contain three-dimesional variogram specifications; the correct order of these columns 

is shown in the above example. First comes the nugget; then comes the variogram sill. 

Columns containing the variogram a_hmax, a_hmin and a_vert values follow this; 

these are the ñaò values of the three-dimensional variogram in two orthogonal, roughly 

horizontal, directions and in a third, roughly vertical, direction. The angles which 

specify these directions (namely ang1, ang2 and ang3) follow. Refer to the 

documentation of the PPKFAC3D utility for a description of all of these three-

dimensional variogram specifications. 

If pilot point parameters are log-transformed, then all of the variogram characteristics 

specified in the three-dimensional pilot points statistical specification file must pertain 

to the log (to base 10) of parameter values. PPCOV3D_SVA has no knowledge of the 

transformation status of pilot point parameters; hence it does not check this. 

Use of PPCOV3D_SVA is very similar to that of PPCOV3D, except for the 

requirement that a three-dimensional pilot points statistical specification file be 

provided instead of a pilot points file and a geostatistical structure file. Prompts and 

typical PPCOV3D_SVA responses are as follows. 

 Enter name of 3D pilot points statis tical specs file: pp_specs.dat  

 Skip a line at the top of this file?  [y/n]: y  

  -  data for 3 12 pilot points read from file pp_specs.dat  

 

 Is overall variogram spherical, exponential or Gaussian? [s/x/g]: x  

 

 Enter name for output matrix file: temp.dat  

 Enter pilot point prefix for parameter names (<Enter> if none): k_  

 

 Filling covariance matrix. ...  

 Using SVD to assure positive definiteness of matrix....  

 -  file temp.dat written ok.  

The algorithmic basis of PPCOV3D_SVA is very simple. The total variance assigned 

to any pilot point is the sum of the nugget and the sill that are ascribed to that pilot 

point. If two pilot points lie in separate zones, then their covariance is zero. If they lie 

in the same zone, a covariance between them is calculated using the variogram 

characteristics pertaining to both pilot points; the lesser of these covariances is then 

adopted. Positive definiteness of the resulting matrix is then guaranteed by subjecting 

it to singular value decomposition and rebuilding it after equating the V matrix to the 

U matrix. 

Uses of PPCOV3D_SVA 

The covariance matrix produced by PPCOV3D_SVA can be used in conjunction with 

the PEST ADDREG1 utility to implement preferred value regularisation in areas of 

complex geology. It can also be used with the PEST RANDPAR utility, and with 

PLPROC, to generate random values for pilot point parameters. 



PPCOV3D_SVA  190 

 

 

See Also 

See also PPCOV, PPCOV3D, PPCOV_SVA and PARCOV. 



PPK2FAC  191 

 

 

PPK2FAC 

Function of PPK2FAC 

PPK2FAC generates a set of kriging factors for use in spatial interpolation from a set 

of pilot points to a MODFLOW/MT3D finite-difference grid. Kriging factors are 

based on user-supplied, nested variograms, each with an arbitrary magnitude and 

direction of anisotropy. Different variograms can be used for spatial interpolation in 

different parts of the model domain. PPK2FAC also writes a MODFLOW-compatible 

real array depicting kriging standard deviations over the model domain, as well as a 

ñregularisation information fileò which can be used to introduce geostatistically-based 

regularisation constraints to a parameter estimation problem. 

Generation of MODFLOW and MT3D input arrays based on PPK2FAC-generated 

kriging factors is carried out by other programs of the Groundwater Data Utilities such 

as FAC2REAL and FAC2MF2K. Separation of the time-consuming, factor-generation 

process from the array construction process facilitates automatic parameter estimation 

based on pilot points using software such as PEST, for kriging factors are unchanged 

as values assigned to the pilot points are adjusted through the parameter estimation 

process.  

Regularisation information recorded by PPK2FAC is used by program PPKREG; 

PPKREG modifies an existing PEST control file containing pilot-point-based 

parameters, adding regularisation constraints based on the geostatistical structure of 

the area, and the distances between the pilot points on which parameterisation of the 

model domain is based. 

Using PPK2FAC 

Structure File 

Before the operational details of PPK2FAC are presented, a ñstructure fileò will be 

described. PPK2FAC reads such a file in order to ascertain the geostatistical 

characteristics of the areas in which spatial interpolation is to be carried out. Use of a 

geostatistical structure to characterise the spatial variation of a hydraulic property 

assumes that values taken by that property are spatially correlated, and that the degree 

of correlation between values at two different points is dependent only on their 

separation. Furthermore, it is assumed that this inter-point distance-dependence can be 

described by one or more nested variograms; an optional uncorrelated component (a 

ñnuggetò) of the hydraulic property field can also be represented. 

A structure file is depicted below. 

 



PPK2FAC  192 

 

 

A structure file  

A structure file is subdivided into different segments. Segments are of two types - 

ñstructure segmentsò and ñvariogram segmentsò. Each of these segments must be 

assigned a unique name. This name is written to the first line of the segment following 

the word STRUCTURE or VARIOGRAM; it must be 10 characters or less in length. 

A structure segment must end with the words END STRUCTURE; a variogram 

segment must end with the words END VARIOGRAM. Note that although some 

words in the above example are shown capitalised, every item within a structure file 

is, in fact, case insensitive. 

Within each structure or variogram segment, data is supplied through the use of 

keywords (capitalised in the above example). Wherever a keyword is supplied it must 

be followed by the value of the variable which the keyword represents. For all 

keywords except VARIOGRAM only one entry is required following the keyword 

itself; however where the keyword VARIOGRAM occurs within a STRUCTURE 

segment, two variables must follow. 

STRUCTURE struct1  

  NUGGET 0.0 

  TRANSFORM log 

  NUMVARIOGRAM  2 

  VARIOGRAM var1 0.6  

  VARIOGRAM var2 0.3  

END STRUCTURE 

 

VARIOGRAM var1 

  VARTYPE 2 

  BEARING 72 

  A 3000  

  ANISOTROPY 13.5  

END VARIOGRAM 

 

VARIOGRAM var2 

  VARTYPE 1 

  BEARING 72 

  A 4000  

  ANISOTROPY 5.0  

END VARIOGRAM 

 

 

STRUCTURE struct2  

  NUGGET 0.0 

  TRANSFORM none 

  MEAN 23.5  

  NUMVARIOGRAM  1 

  MAXPOWERVAR 10000 

  VARIOGRAM var3 .005  

END STRUCTURE 

 

 

VARIOGRAM var3 

  VARTYPE 4 

  BEARING 20 

  A 0.005  

  ANISOTROPY 1.0  

END VARIOGRAM 

 

 



PPK2FAC  193 

 

 

Within any segment of a structure file, keywords and corresponding values can be 

supplied in any order. However there is one exception to this rule; this is that the 

NUMVARIOGRAM keyword must precede the VARIOGRAM keyword in a 

STRUCTURE segment.  

Within each segment of a structure file, each keyword should be cited only once. 

However there is also one exception to this rule; this is that the VARIOGRAM 

keyword within a STRUCTURE segment must be repeated NUMVARIOGRAM 

times.  

Some keywords are mandatory; others can be omitted where they are not required. 

Keywords that can appear in a STRUCTURE segment are NUGGET, MEAN, 

NUMVARIOGRAM, TRANSFORM, VARIOGRAM and  MAXPOWERVAR. 

NUGGET, MEAN and MAXPOWERVAR are optional. 

Each STRUCTURE segment specifies the geostatistical components of the random 

field which characterises the spatial distribution of some hydraulic property over all or 

part of the model domain. These components are a NUGGET (optional) and up to five 

VARIOGRAMs (the number of variograms contributing to any structure being 

provided by the variable NUMVARIOGRAM). The value supplied for the NUGGET 

specifies the contribution made to the total, nested variogram by a random field 

lacking any spatial correlation. The contribution made to the total, nested variogram 

by each of the NUMVARIOGRAM variograms cited in the STRUCTURE segment is 

provided after each VARIOGRAM keyword - see below. 

If the variograms and nugget comprising the geostatistical structure pertain to the 

native value of a hydraulic property, then TRANSFORM should be set to ñnoneò.  

However if they pertain to the log (to base 10) of a hydraulic property, then 

TRANSFORM must be provided as ñlogò. (Note that the use of log variograms, 

though conceptually correct when describing the spatial variation of hydraulic 

properties such as transmissivity and hydraulic conductivity, presents certain problems 

when working with MODFLOW-2000. Fortunately, as is described elsewhere, these 

problems are easily overcome. See Section 5 of Part A of this manual for further 

details.)  

If ñsimple krigingò is to be carried out, then a mean value for the hydraulic property 

represented by the geostatistical structure must be provided in each STRUCTURE 

segment following the keyword MEAN. However if ñordinary krigingò is to be carried 

out, a mean hydraulic property value does not need to be provided; hence the MEAN 

keyword, if present, is ignored. In general, it is better to undertake ordinary kriging 

than simple kriging; see Section 5 of Part A of this manual for a further discussion. It 

is important to note that if TRANSFORM is set to ñlogò, then the mean property value 

supplied after the MEAN keyword must pertain to the log-transformed property 

distribution. 

Two items of information must follow each incidence of the VARIOGRAM keyword 

within a STRUCTURE segment. The first is the name of a variogram. This must be 

10 characters or less in length; specifications for the named variogram must be 



PPK2FAC  194 

 

 

supplied elsewhere in the file within a VARIOGRAM segment. The second item of 

information following each VARIOGRAM keyword within a structure segment is the 

contribution made to the overall structure by that variogram. The sum of the 

contributions made by all variograms, plus the nugget, is equal to the sill of the nested 

variogram comprising the structure, ie. its long-range asymptote. It is important to 

remember that when TRANSFORM is set to ñlogò, variogram contributions must 

pertain to the log of the hydraulic property field. 

MAXPOWERVAR is an optional variable. It is only used if one of more of the 

variograms cited in a STRUCTURE segment are ñpowerò variograms. This type of 

variogram does not have a sill. The sill of a variogram, or of a set of nested 

variograms comprising a structure, is equal to the covariance of the regionalised 

variable represented by the structure. Thus any structure that possesses a power 

variogram component does not have a finite covariance. This brings with it certain 

numerical difficulties when kriging factors are computed based on that structure. 

Fortunately, these difficulties are easily overcome by assuming a suitably high 

covariance; unless a value for MAXPOWERVAR is supplied by the user, PPK2FAC 

assumes a value of 10000 for the structure covariance. Under most circumstances, the 

assumed covariance makes no difference to calculated kriging factors. However if the 

parameters of a power variogram are such that variogram values become this high at 

distances within the dimensions of the study area, then a higher covariance should be 

assigned to the MAXPOWERVAR variable. 

Keywords that can appear within a VARIOGRAM structure are VARTYPE, 

BEARING, A and ANISOTROPY. All of these are mandatory. 

VARTYPE specifies the type of variogram; this must be supplied as either ñ1ò, ñ2ò, 

ñ3ò or ñ4ò indicating a spherical, exponential, Gaussian or power variogram 

respectively. See Section 5 of Part A of this manual for the definition of each of these 

variogram types. Note that, for reasons outlined in that section, use of a Gaussian 

variogram is not recommended; also, care should be taken when using a power 

variogram. The ñAò keyword pertains to the a variable appearing in each of equations 

5.1 to 5.4 of Part A of this manual; for all but the power variogram this is related to 

the range of the variogram. 

BEARING specifies the angle (in degrees) between north and the axis of anisotropy 

(normally the direction of greatest uniformity) of the random field characterised by the 

variogram. ANISOTROPY specifies the ratio of the range in this direction to the 

range in a direction at 90 degrees to BEARING. If BEARING does, indeed, indicate 

the direction of elongation of the ellipse of anisotropy, then ANISOTROPY will be 

greater than 1. However, if desired, the user can enter BEARING as the direction of 

the short axis of the ellipse of anisotropy; in this case ANISOTROPY will be smaller 

than 1. Under isotropic conditions, ANISOTROPY should be set to 1. 

Note that if the name of a variogram is cited in a STRUCTURE segment, then 

specifications for that variogram must be provided in a VARIOGRAM segment. 

However if specifications for a variogram are supplied in a VARIOGRAM segment, 

and that variogram is cited nowhere within a STRUCTURE segment, PPK2FAC will 

not complain. 



PPK2FAC  195 

 

 

Using PPK2FAC 

PPK2FAC execution is initiated by typing its name at the screen prompt. However if a 

ñsettings fileò is not present in the directory from which it is run, and/or if no 

specification is set within that file for the colrow  variable, PPK2FAC will cease 

execution immediately with an appropriate error message. 

When replying to PPK2FACôs prompts in the manner discussed below, do not forget 

that, as with all programs of the Groundwater Data Utilities, you can ñbacktrackò to 

the previous prompt by pressing the ñeò key followed by <Enter> in response to the 

current prompt. 

PPK2FAC first asks for the name of the grid specification file pertaining to a 

MODFLOW model.  

 Enter name of grid specification file:  

See Section 2 of part A of this manual for the details of this file. If the name of a grid 

specification file is cited in a filename file (named files.fig ) residing in the 

directory from which PPK2FAC was run, then that name will be included in the above 

prompt; then you need only press the <Enter> key for this name to be accepted. 

Next PPK2FAC prompts:- 

 Enter name of pilot points file:  

A pilot points file is described in Section 2 of Part A of this manual. If the name of a 

pilot points file is cited in a filename file (named files.fig ) residing in the 

directory from which PPK2FAC was run, then that name will be included in the above 

prompt; simply press the <Enter> key for this filename to be accepted. 

PPK2FAC then prompts:- 

 Enter minimum allowable points separation:  

Enter a value of 0.0 or greater. PPK2FAC calculates the distances between all pairs of 

points cited in the pilot points file that belong to the same zone. If any of these 

distances are less than or equal to the distance entered in response to the above 

prompt, PPK2FAC will list the names of the pertinent points to the screen. When all 

such pairs of points have been listed, PPK2FAC will then terminate execution with an 

appropriate message. As was discussed in Section 5 of Part A of this manual, if pilot 

points are too close together, problems can be encountered in calculating kriging 

factors, especially if the Gaussian variogram is employed. 

PPK2FAC next asks for the name of a MODFLOW-compatible integer array file:- 

 Enter name of zonal integer array file: -  

As is usual for programs of the Groundwater Data Utilities, if an integer array 

filename has an extension of ñinfò then it is assumed to be formatted; if it has an 

extension of ñinuò it is assumed to be unformatted. If any other extension is supplied, 



PPK2FAC  196 

 

 

PPK2FAC will ask whether the file is formatted or unformatted. Note also that if the 

file is formatted then, depending on the setting of the colrow  variable in file 

settings.fig , PPK2FAC may expect a dimensional header in the file preceding 

the integer array. 

The zonal integer array defines zones within a model domain. Hence, depending on 

the application, the zonal integer array may be uniform, or it may contain a number of 

different integers, each representing a different geological unit occurring within the 

study area. 

Next PPK2FAC prompts for the name of a structure file:- 

 Enter name of structure file:  

The specifications of a structure file were provided in the previous section. It contains 

the information required to specify the geostatistical structure pertaining to one or a 

number of hydraulic properties in one or a number of geological units occurring 

within the model area; the disposition of these units is defined by the elements of the 

zonal integer array. 

PPK2FAC then makes a list of all integers cited within the zonal integer array. For 

each one of these zone-defining integers, it asks the following series of questions:- 

 For zone characterised by integer value of n: -  

 Enter structure name (blank if no interpolation for this zone):  

Type in the name of a geostatistical structure supplied in the structure file. This will be 

the structure upon which kriging factors will be based for model cells lying within this 

zone. For each such cell a number of factors is calculated, linking that cell to some or 

all of the pilot points assigned to that zone. When the actual spatial interpolation is 

later carried out (for example by program FAC2REAL), these factors will be 

multiplied by the values pertaining to respective pilot points and added together to 

form the interpolated value at the centre of the cell. Note that if you wish that factors 

not be calculated for cells within this zone, simply press the <Enter> key in response 

to the above prompt. 

The next question asked by PPK2FAC pertaining to the current zone is:- 

 Perform simple of ordinary kriging [ s/o]:  

In general, for the reasons explained in Section 5 of Part A of this manual, it is better 

to undertake ordinary kriging. Note, however, that if you wish to calculate kriging 

factors for simple kriging, then a mean value for the hydraulic property over the zone 

must have been supplied in the pertinent structure in the structure file. 

The next zone-specific question is:- 

 Enter search radius: -  

Enter a positive number; when looking for pilot points for which to calculate kriging 

factors for each cell, PPK2FAC will restrict its search to a distance from each cell 



PPK2FAC  197 

 

 

centre equal to the search radius supplied here. In general, it is best that this search 

radius be large enough to ensure that ñquite a fewò pilot points are linked to each cell 

centre. If you wish that all pilot points assigned to a particular zone be linked to each 

cell centre within that zone (which is often the case), then enter a number as large as 

you like in response to the above prompt (any number larger than the largest 

dimension of the zone would be suitable). In general, it is best to err on the side of 

caution and to make the search radius large enough to include many, rather than few, 

pilot points, for this ensures a smooth interpolated property field. However if too 

many points are used, calculation of the kriging factors can be very slow. Also, it may 

be desirable in some instances to restrict the number of points used for interpolation to 

any one cell centre in order to allow a little more spatial property variation within the 

zone. 

PPK2FACôs next two prompts also pertain to the number of pilot points used in 

calculating interpolated property values at cell centres. 

Enter minimum number of pilot points to use for interpolation:  

Enter maximum number of pilot points to use for interpola tion:  

The answer to the first of the above questions must be at least 1. If ever PPK2FAC 

fails to find the specified minimum number of pilot points within a distance of one 

search radius from any cell centre, no kriging factors will be calculated for that cell 

centre; the ñinterpolatedò hydraulic property for that cell will then be assigned a 

dummy value by program FAC2REAL when it applies the kriging factors to actually 

carry out the interpolation.  

By supplying an appropriate answer to the second of the above requests, you can 

restrict the number of points used to perform spatial interpolation to any one cell (ie. 

only the closest n points will be used, where n is supplied in response to the prompt). 

As stated above, this may sometimes be desirable in order to reduce the time required 

to calculate kriging factors (this time rises rapidly if more than about 25 points are 

used), and to allow a little more spatial variation of the interpolated property field. 

In answering the above three questions, the ñsafestò option is to supply a very large 

value for the search radius (far larger than the largest dimension of the model 

domain), a value of 1 in answer to the second of the above prompts, and use the third 

answer to limit the number of pilot points used for interpolation, if you wish. 

However, unless there are more than about 10 pilot points within a zone, there is 

really nothing to be gained by limiting the number of points used in spatial 

interpolation. In that case, simply answer the third of the above prompts by supplying 

a number that is larger than the number of points listed in the pilot points file; any 

number up to 500 will do. 

Before calculating kriging factors, PPK2FAC prompts the user for its output 

filenames. The first of these prompts is:- 

 Enter na me for interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  

Kriging factors are written to a special file named an ñinterpolation factor fileò; this 

file can be read by programs FAC2REAL and FAC2MF2K documented herein. The 



PPK2FAC  198 

 

 

file can be written as a text (ie. ñformattedò) or binary (ie. ñunformattedò) file. The 

latter method may prove useful where FAC2REAL is used in conjunction with 

MODFLOW and/or MT3D to undertake pilot-point-based parameter estimation under 

the control of PEST. When this is done, the ñcomposite modelò, as run by PEST, must 

be executed many times during the overall parameter estimation process. On each 

occasion that this composite model is run, FAC2REAL will need to re-read the 

interpolation factor file. If this is a binary file, rather than a text file, the time required 

to read this file can be significantly reduced, especially if the model grid is large. 

Next PPK2FAC prompts:- 

 Enter name for output standard deviation array file:  

A MODFLOW-compatible real array will be written to this file. As is explained in 

Section 2 of Part A of this manual, this can be a formatted or unformatted file. If the 

extension is ñrefò PPK2FAC (like other programs of the Groundwater Data Utilities) 

assumes that the file is formatted; however if a filename with an extension of ñreuò is 

supplied, then PPK2FAC assumes that the file is a binary file.  If neither of these 

extensions is supplied, PPK2FAK prompts the user for the nature of the file. 

The standard deviation array file contains the square root of the ñkriging varianceò 

calculated for every cell centre for which kriging factors are calculated. Because it 

contains a MODFLOW-compatible real array, this file should be capable of 

importation into most MODFLOW GUIôs for visualisation and display. 

Finally PPK2FAC prompts:- 

 Enter name for regularisation information file:  

This file is written for the benefit of program PPKREG which adds regularisation data 

to a PEST control file built to estimate parameters based on the same pilot points as 

are listed in the pilot points file read by PPK2FAC. The regularisation information file 

lists the names of all of the pilot points cited in the pilot points file. Following this is a 

matrix in which, for various pairs of pilot points, a variogram value is calculated. Note 

the following:- 

1. A variogram value is calculated for a pair of points only if both points lie 

within the same zone. 

2. The geostatistical structure pertaining to that zone (which may include a 

number of nested variograms and a nugget) is used to calculate the 

variogram value pertaining to the pair of points. The distance used in this 

calculation is the distance between the respective pilot points. 

3. A variogram value is calculated for a particular pair of points only if there 

is at least one cell within the model grid for which a kriging factor has 

been calculated linking both of those points to that cell. If two particular 

pilot points are ñtoo far apartò (as defined by the search radius or by the 

ñmaximum number of points for interpolationò criterion), then a variogram 

value for this pair of points is not calculated by PPK2FAC. Hence a 



PPK2FAC  199 

 

 

relationship between this pair of points is not included as a regularisation 

prior information item in the PEST control file generated by program 

PPKREG. In some instances, this will serve to reduce the number of such 

prior information items to a manageable level. 

As soon as a response is provided to the last of the above prompts, PPK2FAC 

commences its calculation of kriging factors. For each zone for which these factors are 

required, PPK2FAC displays a screen message similar to this:- 

Number of pilot points for this zone     =     8  

 Mean data value for these pilot points   =   12.456  

 Data standard deviation for these points =   3.4563  

 Working....  

 No. of grid poi nts to which factors were calculated =  2710  

Note that, as is explained in Section 5 of part A of this manual, kriging factors are 

independent of the hydraulic properties assigned to pilot points. Hence the property 

values associated with pilot points, as read from the pilot points file, are not used in 

the calculation of kriging factors; they are only used in calculating the above statistics. 

Thus the same pilot points file used by program PPK2FAC for the calculation of 

kriging factors, does not need to be supplied to program FAC2REAL for carrying out 

the actual spatial interpolation, or to program FAC2MF2K for the modification of an 

existing MODFLOW-2000 dataset by inclusion of pilot-point-based parameters. 

However the pilot points file supplied to either of these programs must cite the same 

pilot points as those read by PPK2FAC, and must list them in the same order. If this is 

not done, the respective program will cease execution with an appropriate error 

message. 

PPK2FAC carries out the first step of a spatial interpolation process based on kriging. 

The second step is carried out by either FAC2REAL or FAC2MF2K. The first of these 

programs applies the kriging factors to generate a MODFLOW-compatible real array. 

Pilot point values can be read from the same file as read by PPK2FAC, or they can be 

read from a different pilot points file as long as that file cites the same pilot points in 

the same order, and as long as pilot points are assigned to the same zones as in the 

original pilot points file read by PPK2FAC. If FAC2REAL is used to build a 

MODFLOW input array as part of a composite model run by PEST for the purpose of 

estimating hydraulic properties at the sites of pilot points, a PEST template file can be 

built from the pilot points file. Prior to each model run PEST will build a new pilot 

points file from this template file for the use of FAC2REAL. FAC2REAL will then 

build a real array in which the latest parameter values, as calculated by PEST, are 

interpolated to model grid cell centres prior to being read by MODFLOW. 

FAC2MF2K is used to modify a set of MODFLOW-2000 input files in order that pilot 

point parameterisation can be undertaken using MODFLOW-2000. In this case 

PPK2FAC-generated kriging factors are used to build MODFLOW-2000 multiplier 

arrays. Note, however, that where interpolation is based on log variograms, rather than 

native variograms, the USGS version of MODFLOW-2000 cannot be used to 

calculate hydraulic property arrays using pertinent parameter values and multiplier 

arrays for, as presently coded, it cannot undertake array-generation based on the logs 



PPK2FAC  200 

 

 

of parameters. Instead, a modified version of MODFLOW-2000 named MF2KASP 

must be used. See Section 5 of Part A of this manual for further details. 

If undertaking pilot-point-based parameter estimation using PEST, it is often desirable 

that PEST work in regularisation mode rather than parameter estimation mode in 

order that stability of the parameter estimation process can be guaranteed, and in order 

that geologically reasonable parameter values are estimated. A PEST control file 

which uses pilot-point-based parameters can be modified using program PPKREG to 

include regularisation prior information based on the contents of a regularisation 

information file generated by PPK2FAC. 

See Also 

See also FAC2MF2K, FAC2REAL, FIELDGEN and PPKREG. 



PPK2FACF  201 

 

 

PPK2FACF 

Function of PPK2FACF 

PPK2FACF is one member of a group of programs which expedites the use of pilot 

points as a device for spatial parameterisation of a MicroFEM model. Other members 

of this suite are FAC2FEM, PPKREG and FEM2SMP. PPK2FACF and FAC2FEM 

are very similar to PPK2FAC and FAC2REAL respectively which implement the use 

of pilot points in the MODFLOW/MT3D context. PPKREG is used in both the 

MODFLOW/MT3D and MicroFEM contexts. FEM2SMP converts MicroFEM output 

data to bore sample file format so that time-interpolation and PEST control file 

construction utilities used in the PEST-MODFLOW interface (viz. SMP2SMP and  

PESTPREP) can also be used with MicroFEM. 

PPK2FACF generates a set of kriging factors for use in spatial interpolation from a set 

of pilot points to a MicroFEM mesh. Kriging factors are based on user-supplied, 

nested variograms, each with an arbitrary magnitude and direction of anisotropy. 

Different variograms can be used for spatial interpolation in different parts of the 

model domain. PPK2FACF also writes a ñregularisation information fileò which can 

be used to introduce geostatistically-based regularisation constraints to a parameter 

estimation problem. 

Generation of MicroFEM input files based on PPK2FACF-generated kriging factors is 

carried out by FAC2FEM. Separation of the time-consuming, factor-generation 

process from the spatial interpolation process facilitates automatic parameter 

estimation based on pilot points using software such as PEST, for kriging factors are 

unchanged as values assigned to the pilot points, and then to the mesh through spatial 

interpolation, are adjusted through the parameter estimation process.  

Regularisation information recorded by PPK2FACF is used by program PPKREG; 

PPKREG modifies an existing PEST control file containing pilot-point-based 

parameters, adding regularisation constraints based on the same geostatistical 

structures as those used for the generation of kriging factors. 

Using PPK2FACF 

PPK2FACF is very similar to PPK2FAC. Only differences between these two 

programs will be described; the user should refer to the documentation of PPK2FAC 

for an explanation of the salient aspects of the use of PPK2FACF. 

When using PPK2FACF, donôt forget that if you respond to any of its prompts by 

simply typing ñEò or ñeò and then <Enter>, you can backtrack to the previous prompt. 

The same applies to all members of the Groundwater Data Utilities.  

Upon commencement of execution PPK2FACF asks the user for the name of a pilot 

points file, which it then proceeds to read. However, unlike PPK2FAC, PPK2FACF 

does not need to read a grid specification file, this file being useful only in the 



PPK2FACF  202 

 

 

MODFLOW/MT3D context for conveying the size, disposition and design of the 

finite difference grid upon which these latter models are based. Instead of the design 

of a finite difference grid, PPK2FACF must acquaint itself with the design of a finite 

element mesh. It also needs to know the zonation of this mesh. (Recall that pilot 

points can be assigned to different zones in a pilot points file; interpolation for each 

zone within a finite element mesh takes place only on the basis of pilot points 

assigned to that zone.) 

To inform itself of mesh design and zonation PPK2FACF prompts for the names of 

two MicroFEM files, these being a ñfemò file and a ñspecial ASCII labelò file. The 

respective prompts are:- 

Enter name of fem file defining finite element mesh:  

Enter name of special ASCII label file defining zonation:  

PPK2FACF reads the number of nodes in the mesh from the first of these files. It 

reads node coordinates and zone numbers from the second of these files. It is the 

userôs responsibility to ensure that this file meets the expectations of PPK2FACF; an 

example follows:- 

Part of a special ASCII label file. 

A special ASCII label file has three columns of data; the first two columns are 

comprised of the eastings and northings of all nodes within the finite element mesh, 

while the third column is comprised of zone numbers. This file should be prepared 

within MicroFEM as follows:- 

1. Create a label field for the mesh (select ñProject Managerò, then ñUnitò, 

then ñAddò, then ñLabelsò with the ñNewò radio button selected). 

2. In ñwalking modeò mark different sections of the mesh according to the 

desired zonation; provide only integer values to the label field. Assign 

these integer values to marked or unmarked areas of the mesh while in 

0.000 6000.000  2 

214.286 6000.000 2  

0.000 5777.778 2  

428.571 6000.000 2  

315.317 5822.733 2  

0.000 5555.556 2  

242.093 5616.571 2  

642.857 6000.000 3  

518.925 5854.790 3  

486.844 5674.949 3  

0.000 5333.333 3  

214.240 5403.349 3  

434.535 5463.636 3  

857.143 6000.000 4  

718.385 5780 .881 4  

684.675 5497.692 4  

0.000 5111.111 4  

204.523 5188.182 4  

402.321 5261.606 4  

571.162 5322.899 4  

929.639 5826.084 4  



PPK2FACF  203 

 

 

MicroFEM ñinput modeò. Make sure that every node is assigned an 

integer in this manner. 

3. Select ñExportò from the main menu, then ñSpecial ASCII filesò while the 

respective label field is highlighted in the bottom right of the MicroFEM 

window. The file type is ñ&..ò; save the file, giving it a suitable name. 

The saved special ASCII file should have a similar format to that depicted in the 

above figure. It is important to ensure that every line of this file has 3 entries; this 

will only occur if  a label is assigned to every node in the mesh. For those zones in 

which pilot point interpolation is to take place, the zone number must correspond to a 

zone number appearing in the pilot points file upon which spatial interpolation will be 

based. In the simplest case where only one zone is used, all nodes will be assigned the 

same integer value; this will be the same zone number to which all points in the pilot 

points file are assigned. 

Other aspects of PPK2FACF use are very similar to those of PPK2FAC. Like 

PPK2FAC, PPK2FACF requests the name of a structure file, and the names of the 

structural elements to be used for spatial interpolation within each zone. See the 

documentation of PPK2FAC for details.  

Like PPK2FAC, PPK2FACF writes a (formatted or unformatted) factor file and a 

regularisation information file; the latter file is used by PPKREG for adding 

regularisation information to a PEST control file. Unlike PPK2FAC however, 

PPK2FACF does not write a standard deviation array file. 

Uses of PPK2FACF 

The factor file written by PPK2FACF is used by FAC2FEM to write a MicroFEM 

input file in which a user-nominated aquifer property is calculated by spatial 

interpolation from a set of pilot points. Whether or not MicroFEM is being used in 

conjunction with PEST for pilot-point-based calibration, this can provide an extremely 

useful means of spatial interpolation from a set of measurement or data points. 

Where pilot-point values are assigned through calibration, regularisation should be 

introduced to the calibration process because of the large number of parameters that 

normally require estimation. As is explained elsewhere in this manual, the more pilot 

points that are used for spatial parameterisation, the less likely is the resulting 

parameter field to be ñblotchyò, and the less likely it is that one or a number of pilot 

points will be assigned unusually high or low values. Regularisation does much to 

ensure that realistic parameter fields will result from the calibration process, and 

reduces the likelihood of numerical instability. Regularisation information can be 

added to a PEST control file using PPKREG; in doing this, PPKREG uses the 

ñregularisation information fileò written by PPK2FACF. See the documentation of 

PPK2FAC for further details. 



PPK2FACF  204 

 

 

See Also 

See also FEM2SMP, FAC2FEM and PPKREG. 



PPK2FACG  205 

 

 

PPK2FACG 

Function of PPK2FACG 

PPK2FACG is similar to other members of the PPK2FAC* family in that it generates 

a set of kriging factors through which interpolation can take place from a set of pilot 

points to another set of user-nominated points. Its complimentary program FAC2G 

then undertakes this interpolation based on these factors. ñGò stands for ñgeneralò, as 

the format for the file containing the points to which interpolation must take place is 

not related to that of any specific model. However in most cases these will represent 

the locations of the nodes of a numerical grid or mesh. 

PPK2FACG also writes regularization information to a user-nominated file. This can 

be used by the PPKREG utility for adding preferred-difference prior information 

equations to an existing PEST control file. The parameters that are cited in these prior 

information equations are assumed to be associated with the set of pilot points from 

which interpolation takes place. 

Using PPK2FACG 

Prompts, and typical responses to PPK2FACG prompts, are as follows. 

 Enter name of pilot points file: vk5.pts  

  -  data for 193 pilot points read from pilot points file vk5.pts  

 Enter minimum allowable points separation: 0 

 

 Enter name of nodal x,y,zone file: laymat5.xyz  

 

 Enter name of structure file: struct.dat  

 

 The following zones have been detected in x,y, zone  file: -  

 

    For zone characterised by integer  value of 5: -  

    Enter structure name (blank if no interpolation for this zone): struc_1  

    Perform simple or ordinary kriging [s/o]: o 

    Enter search radius: 1e20  

    Enter minimum number of pilot points to use for interpolation: 1 

    Enter maximum n umber of pilot points to use for interpolation: 30  

 

    For zone characterised by integer value of 6: -  

    Enter structure name (blank if no interpolation for this zone): <Enter>  

 

 Enter name for int erpolation factor file: factors.dat  

 Is this a formatt ed o r unformatted file? [f/u]: f  

 

 Enter name for regularisation information file: reg.dat  

 

The format of an ñx,y,zoneò file is illustrated by the following example. 



PPK2FACG  206 

 

 

722855.0930    4447533.306      10  

723081.6700    4447427.652      10  

723534.8240    4447216.3 42      5  

723761.4000    4447110.688      5  

723987.9780    4447005.034      5  

724214.5550    4446899.378      5  

724441.1320    4446793.724      5  

722976.0160    4447201.075      9  

723429.1690    4446989.765      5  

723655.7460    4446884.111      5  

723882.3 230    4446778.456      5  

724108.9000    4446672.802      5  

724335.4770    4446567.147      5  

724562.0540    4446461.493      5  

726827.8230    4445404.947      5  

727054.3990    4445299.292      5  

727280.9780    4445193.638      5  

727507.5540    4445087.983       5 

727734.1320    4444982.328      5  

722190.6300    4447291.461      8  

 Part of an x,y,zone file. 

As is apparent from the above figure, an x,y,zone file contains three columns of data. 

The first two columns contain the eastings and northings of points to which 

interpolation must take place. The third column lists the zone number that is 

associated with each point.  

Interpolation factors written by PPK2FACG are readable by the FAC2G utility. This 

uses the kriging factors computed by PPK2FACG to interpolate from pilot points to 

the points cited in the x,y,zone file.  

All other aspects of PPK2FACG use are identical to that of PPK2FAC. Note in 

particular that interpolation to a point cited in the x,y,zone file will take place only 

from pilot points that belong to the same zone as that to which the point belongs. 

See Also 

See also FAC2G, PPKREG. 

 



PPK2FAC1  207 

 

 

PPK2FAC1 

Function of PPK2FACF1 

PPK2FAC1 is identical to PPK2FAC except for the fact that it writes a regularisation 

data file which contains more information than the corresponding file written by 

PPK2FAC. Such a file is suitable for the use of PPKREG1, and enhanced version of 

PPKREG. 

 



PPK2FAC2  208 

 

 

PPK2FAC2 

Function of PPK2FACF2 

PPK2FAC2 is identical to PPK2FAC1 except for the fact that it prompts for a 

ñblanking radiusò in addition to an interpolation radius. If any cell for which 

interpolation is requested is removed from its closest pilot point by a distance that is 

greater than this distance, then the cell is ñblankedò, irrespective of the interpolation 

radius. Thus the latter may be very large in order to avoid discontinuities in the kriged 

field. However the blanking radius may be relatively small, in order to prevent 

computation of unrealistic interpolated values. 

PPK2FAC2 does not calculate kriging factors for a blanked cell. When using 

FAC2REAL, this cell can then be assigned an ñinterpolated valueò which is the same 

as that assigned to any other cell to which interpolation cannot take place (for example 

an indicator value such as 1.0e35). 



PPK2FAC3  209 

 

 

PPK2FAC3 

Function of PPK2FAC3 

Like PPK2FAC, PPK2FAC1 and PPK2FAC2, PPK2FAC3 was designed for use in 

the MODFLOW/MT3D/SEAWAT modelling environments.  However some features 

have been included in the design of PPK2FAC3 which may yield better interpolated 

hydraulic property fields in narrow alluvial systems, particularly those which are 

comprised of a main trunk and multiple tributaries. 

Ideally in systems such as this, spatial interpolation should take place within 

tributaries, but should not cross from one tributary to another where the two are close 

but separate, as is illustrated in the figure below. 

A
B

C

D

E

 

Model domain covering an alluvial valley network. 

Pilot points may be placed throughout a model domain such as that shown above to 

allow expression of alluvial hydraulic property heterogeneity within the calibration 

process. In particular, pilot points may be placed down tributaries A and B (as well as 

through all other parts of the model domain). However interpolation should be such 

that grid cells within tributary A are informed only by pilot points which lie within 

this tributary (or in the main channel close to the mouth of the tributary), while grid 

cells in tributary B should be informed only by pilot points that also lie within that 

tributary (and perhaps by pilot points within the main channel that lie near the mouth 

of the tributary).  

Using functionality available through PPKFAC, PPKFAC1 and PPKFAC2, this can 

be achieved through the use of zones. Thus tributaries A and B would be assigned to 



PPK2FAC3  210 

 

 

different zones. This mechanism would indeed ensure that no cross-tributary 

interpolation takes place. However it would also create discontinuities in hydraulic 

properties at zone boundaries - discontinuities which are unlikely to be present in the 

real alluvium system, and which a modeller may be trying to avoid through use of 

pilot points as a parameterization device. 

PPK2FAC3 provides two mechanisms which can assist the modeller in overcoming 

this problem. Neither mechanism is perfect; so the user should monitor the 

performance of PPK2FAC3 carefully in assessing the effectiveness (or otherwise) of 

these mechanism in any particular modelling context. These mechanisms can be used 

together, or separately.  

Like PPK2FAC, PPK2FAC1 and PPK2FAC2, PPK2FAC3 calculates and records 

factors on which kriging is ultimately based. Spatial interpolation is actually carried 

out by the FAC2REAL utility. Use of FAC2REAL in conjunction with PPK2FAC3-

generated kriging factors is identical to its use with the other members of the 

PPK2FAC suite. Because PPK2FAC3 is built from PPK2FAC2 (which was built from 

PPK2FAC1), the PPKREG1 utility must be employed for adding ñpreferred parameter 

differenceò regularization to a PEST control file, rather than the PPKREG utility, if 

this type of regularization is required. Alternatively, the all-purpose GENREG utility 

can be employed, or the PEST ADDREG1 utility in its stead if only ñpreferred 

parameter valueò regularization is required. 

Using PPK2FAC3 

Exclusion Zones 

Immediately after prompting the user for geostatistical structures and other variables 

governing interpolation within each of the zones that it finds in the integer array file 

with which it was provided (see documentation of PPK2FAC for details), PPK2FAC3 

prompts: 

Enter name of exclusion zone file (<Enter> if none):  

If he/she wishes, the user can provide the name of an ñexclusion zone fileò in response 

to the above prompt. To prevent use of exclusion zone functionality, respond to the 

above prompt by simply pressing the <Enter> key. 

An exclusion zone file is depicted in the figure below. 

 

# This is an exclusion file  

1    2  3  4  5   

2    3  4  5  3  5 ! Sandy Creek Tributary  

7    1  3  5  

etc  

 

 Example of an exclusion zone file. 



PPK2FAC3  211 

 

 

Any line in an exclusion zone file that begins with the ñ#ò character is ignored Any 

characters including and following the ñ!ò character on any line are ignored. Blank 

lines are also ignored. 

All other characters in an exclusion file must be integers. Furthermore, all of these 

integers must feature in the integer zonation file that was previously read by 

PPK2FAC3. The first integer on each line denotes a ñtarget zoneò; the following 

integers denote ñexclusion zonesò pertinent to that target zone. Each line must possess 

at least two integers, the first identifying a target zone and the second identifying an 

exclusion zone. The target zone must have been assigned a geostatistical structure in 

response to previous PPK2FAC3 prompts; thus it must be a zone in which 

interpolation from pilot points to the finite-difference grid has been denoted as taking 

place. 

Consider the first data line in the above exclusion zone file. The first integer is 1. The 

integers 2, 3, 4 and 5 follow. This line instructs PPK2FAC3 to calculate kriging 

factors based on the premise that cells in zone 1 of the finite-difference grid (this 

being the target zone) are assigned values through interpolating from all pilot points 

listed in the pilot points file except for the following: 

1. pilot points which lie in zones to which no geostatistical structure was 

assigned in response to previous PPK2FAC3 prompts; 

2. pilot points assigned to zones 2, 3, 4 and 5 (these being the exclusion zones 

pertinent to zone 1). 

In the figure of the alluvial valley provided above, pilot points belonging to the zone 

ascribed to tributary B should be excluded from interpolation to cells within tributary 

A, even though some of the pilot points in tributary B may be closer to some of the 

cells in tributary A than some of the pilot points that have been assigned to this same 

tributary. However the zone comprising the main alluvial aquifer should not be 

excluded from interpolation to tributary A. Thus cells in the boundary area where 

tributary A meets the main aquifer will be informed by pilot points in both of these; 

hence the transition from the tributary to the main aquifer will be smooth. 

The following should be noted. 

1. Any target zone cited in an exclusion zone file must have been assigned a 

geostatistical structure in response to previous PPK2FAC3 prompts, this 

indicating that interpolation must take place to cells within that zone. 

2. A target zone must not be cited as an exclusion zone for itself. 

3. An exclusion zone cannot be assigned twice to the same target zone. 

4. All  zones which are NOT excluded from a particular target zone must have 

been assigned the same geostatistical structure as the target zone, except if they 

have been assigned no geostatistical structure at all. In the latter case 

interpolation will not take place from pilot points within pertinent zones to any 



PPK2FAC3  212 

 

 

target zone, irrespective of the fact that they have not been specifically 

excluded from any target zone. 

5. Not all target zones need to be listed in an exclusion zone file. In this case, 

pilot points from NO zones are excluded from interpolation to uncited target 

zones (except zones that have not been assigned a geostatistical structure as 

discussed above). 

6. If all zones within a model domain are cited as target zones within an 

exclusion zone file, and if all zones but the target zone are listed as exclusion 

zones in each case, this provides identical functionality to that which would 

prevail if no exclusion zone file was supplied at all. In this case (as in normal 

PPK2FAC operation), interpolation to cells within a zone takes place only 

from pilot points within that zone. 

7. If no exclusion zone file is supplied, PPK2FAC3 operates in an identical 

manner to PPK2FAC, PPK2FAC1 and PPK2FAC2. Thus interpolation to a 

cell is allowed only from pilot points that are assigned to the same zone as that 

in which the cell lines. However if an exclusion zone file is supplied (even if it 

cites only one target zone), then pilot points from ALL  zones will  be used for 

interpolation to all cells within any other zone, except for pilot points in zones 

that are specifically excluded from interpolation to user-specified target zones. 

Thus the whole modus operandi of zone functionality changes if an exclusion 

zone file is provided. Note also that, in light of the above comment, zones to 

which a certain geostatistical structure is assigned must be excluded from 

interpolation to a target zone to which a different structure is assigned, or an 

error condition will arise.  

8. Irrespective of how many non-excluded zones exist for a particular target zone, 

interpolation to cells within the target zone will only take place from as many 

pilot points as the maximum allowed for that zone as provided by the user in 

response to previous PPK2FAC3 prompts. Likewise, the previously-provided 

interpolation radius (which is specific to each target zone) is still operative; no 

interpolation will take place from a pilot point to a cell if the separation 

between the two is greater than this distance. (Thus there is no need to exclude 

zones from a target zone if they are removed from the target zone by a distance 

that is greater than the interpolation radius associated with that zone.) 

If an error condition is encountered, PPK2FAC3 will respond with an appropriate 

error message. 

Interpolation Across Inactive Areas 

Following PPK2FAC3ôs prompt for an exclusion file, it next prompts: 

Prevent interpolation across inactive  areas? [y/n]:  

If the response to this question is ñnò, the matter is not pursued. However if it is ñyò, 

the following questions are asked. 

Enter min relative contiguous  inactive separation for rejection (0 to 1):  



PPK2FAC3  213 

 

 

Enter min absolute contiguous inactive sep aration for rejection:  

Reject if one or both thresholds is exceeded?  [o/b]:  

On the basis of the userôs answers to these questions, PPK2FAC3 decides what pilot 

points to exclude from interpolation to a particular cell. Note that this decision takes 

place in the context of whether or not exclusion zone functionality is operative. Thus 

pilot points can be excised from interpolation to a particular cell through this 

mechanism, only if they have not already been excised through zone considerations 

discussed above. For ease of characterization, this second exclusion methodology will 

be referred to as ñline-of-sight exclusionò.  

Consider the  pilot point and cell illustrated in the figure below. Suppose that both of 

these are in the same zone, or that they are in different zones but that the zone in 

which the pilot point lies has not been excluded from interpolation to the target zone 

in which the depicted cell lies. 

A
B

C

D

E

 

A pilot point in tribu tary A and a grid cell in tributary B.  

The line that joins the pilot point to the cell is also illustrated in the figure. Inclusion 

or exclusion of the pilot point as an information source for the depicted cell can take 

place according to the characteristics of this line if the response to the prompt: 

Prevent interpolation across  inactive areas? [y/n]:  

is ñyò. 

Suppose the userôs response to the prompt: 

Enter min relative contiguous inactive separation for rejection (0 to 1):  

is then ñ0.1ò. Then the pilot point will not be an information source for the cell if 

there is a non-interrupted segment of the above line which is at least 0.1 of its length 

and which lies within one or more zones that are excluded from informing the target 



PPK2FAC3  214 

 

 

zone to which tributary B belongs (these being denoted as ñinactive areasò in the first 

of the above prompts). These ñinactiveò zone(s) may simply be those denoted in the 

previously-supplied integer array to which no geostatistical structure has been 

assigned; for example a zone characterized by an integer value of 0 is often used to 

indicate cells which are inactive from the modelôs point of view and hence require no 

hydraulic property assignment. Alternatively, the ñinactiveò zone from the line-of-

sight exclusion point of view can be a zone that has been excluded from interpolation 

to zone B (if an exclusion zone file has been supplied) or is a zone other than that to 

which both the pilot point and the cell belong (if no exclusion zone file has been 

supplied). 

Suppose the userôs response to the prompt: 

Enter min absolute contiguous inactive separation for re jection:  

is ñ3560ò.  Then the pilot point will be excluded from informing the cell if any 

uninterrupted segment of the line joining the two lies in an inactive zone (i.e. excluded 

from the target zone or without assignment of geostatistical structure) and is of length 

3560 or more. 

Through the last of the above three prompts, namely: 

Reject if one or both thresholds is exceeded?  [o/b]:  

the user can choose whether just one or both of the above conditions must be met 

before exclusion occurs.  

The following should be noted. 

1. Normal exclusion rules are applied before line-of-sight exclusion. Hence if a 

pilot point and a cell are separated by more than the user-supplied interpolation 

distance for the zone to which the cell belongs, or if there are N pilot points 

closer to the cell than the pilot point in question, where N is the user-supplied 

maximum number of pilot points used in interpolation within the target zone, 

exclusion will not take place according to line-of sight exclusion rules, for it 

will already have taken place in accordance with these other rules. 

2. Line-of-sight exclusion may not always work as a user anticipates, especially 

where zones assigned to tributaries are thin and possess torturous boundaries. 

In this case a line joining a pilot point to a cell may cross inactive areas, even 

if the pilot point and the cell lie within the same tributary. In some cases this 

problem can be somewhat mitigated by defining the zone that defines 

interpolation to be somewhat wider than that which defines active tributary 

cells  as used by the model. The fact that interpolation may then take place to 

cells for which hydraulic property values are not actually needed by the model 

is of no concern to the model. 

3. For large model domains comprised of many cells, PPK2FAC3 may take a 

long time to run. 



PPK2FAC3  215 

 

 

General 

Irrespective of which of the above exclusion methodologies is employed, the user 

should check interpolation results carefully. The FAC2REAL utility (which 

undertakes spatial interpolation on the basis of kriging factors calculated by 

PPK2FAC3) asks the user for a value to assign to cells to which no interpolation takes 

place. The user should specify an obvious value (for example 1.0e35) as an indicator 

of this condition. He/she should then carefully inspect the real array that emerges from 

the interpolation process to ensure that cells in surprising places are not assigned this 

value. He/she should also check for discontinuities and/or flat areas in the interpolated 

field where all but one pilot point may have actually been excluded from interpolation. 

The success of using the above exclusion methodologies will depend to a large degree 

on values assigned to other interpolation parameters (as will the success of the 

interpolation process in general). At the time of writing the following are 

recommended.  

1. Choose an exponential variogram for interpolation. This is less likely to cause 

oscillatory behaviour of the interpolated field than other variograms. 

2. Choose an ñaò value for this variogram that is roughly equal to the average 

inter-pilot-point distance.  

3. Do not leave large gaps in pilot point emplacement. 

4. Provide an extremely high search radius. 

5. However limit interpolation to the closest 9 to 15 pilot points. 

6. Respect any pronounced anisotropy that may exists in an area. 

Uses of PPK2FAC3 

PPK2FAC3 contains all of the functionality that is provided in PPK2FAC, 

PPK2FAC1 and PPK2FAC2. However, as stated above, additional functionality 

available in PPK2FAC3 is designed specifically to overcome problems associated 

with long alluvial valleys. 

At the time of writing PPK2FAC3 has had only limited application. User feedback is 

welcome. 

See Also 

See also FAC2REAL, PPKREG1. 

 

 



PPK2FAC3D  216 

 

 

PPK2FAC3D 

Function of PPK2FAC3D 

PPK2FAC3D computes kriging factors through which spatial interpolation can be 

undertaken from a set of three-dimensional pilot points to the cell-centres of a 

MODFLOW finite-difference grid. In this capacity it is very similar to the PPK2FAC 

family of utilit ies used for two-dimensional interpolation. However, unlike the latter 

utilit ies, it does not compute the interpolation standard deviation at each interpolated 

point. Nor does it store regularisation information for later use by utilities such as 

PPKREG which add regularisation prior information to a PEST control file. 

PPK2FAC3D uses a modified version of the kt3d subroutine supplied with the GSLIB 

library in computation of kriging factors. See the following web page for more details. 

http://www.gslib.com/ 

See also Deutsch and Journel (1987). 

Using PPK2FAC3D 

A Three-Dimensional Pilot Points File 

The role of PPK2FAC3D is to assist in three dimensional interpolation from a set of 

three-dimensional pilot points to the nodes of a three-dimensional grid. Each pilot 

point must be supplied with a name (of 10 characters or less in length), an easting, a 

northing, an elevation, a zone number and a value. This information is stored in a 

ñthree-dimensional pilot points fileò the formatting of which is identical to that of a 

normal pilot points file except for the requirement of an extra column of data which 

provides point z (i.e. elevation) coordinates. An example follows. 

     1_1_a       683.013       7816.987    - 5.0      1        3.435  

   9_112_a     19179.963      11279.329    - 5.0      1        7.876  

   10_10_a      9903.684       5346.316    - 5.0      1        7.323  

   40_60_a     16007.016       5175.035    - 5.0      1        9.543  

   77_62_a     19705.221       - 830.444    - 5.0      1        1.345  

  77_117_a     27369.545       3594.556    - 5.0      1        2.675  

     1_1_b       683.013       7816.987    - 45.0     1        7.876  

   9_112_b     19179.963      11279.329    - 45.0     1        2.789  

   10_10_b      9903.684       5346.316    - 45.0     1        9.432  

   40_60_b     16007.016       5175.035    - 45.0     1       10.456  

   77_62_b     19705.221       - 830.444    - 45.0     1        5.632  

  77_117_b     27369.545       3594.556    - 45.0     2        2.345  

     1_1_c       683.013       7816.987    - 220.0    2        1.342                   

   10_10_c      9903.684       5346.316    - 220. 0    2        9.542  

  77_117_c     27369.545       3594.556    - 220.0    2        4.321  

Part of a three-dimensional pilot points file. 

Columns in a three-dimensional pilot points file are as follows. 

¶ The first column contains pilot points identifiers; these must be 10 characters 

or less in length. 



PPK2FAC3D  217 

 

 

¶ The second, third and fourth columns contain pilot point eastings, northings 

and elevations respectively. 

¶ The fifth column contains the zone number to which each pilot point pertains. 

¶ The last column contains the parameter value associated with each pilot point. 

Three-Dimensional Geostatistical Structures 

Like PPK2FAC, PPK2FAC3D prompts for the name of a structure file. It reads 

specifications for geostatistical structures from this file. Each geostatistical structure is 

comprised of one or more variograms. If three-dimensional kriging is to be carried 

out, variograms cited by a referenced geostatistical structure must be three-

dimensional variograms. Note that a geostatistical structure can cite more than one 

variogram. 

Three-dimensional variograms are illustrated in the figure below, which shows part of 

a structure file. 

STRUCTURE struct1  

  NUGGET 0.0 

  TRANSFORM log 

  MEAN 1 

  NUMVARIOGRAM  1 

#  VARIOGRAM var2c 0.6  

  VARIOGRAM var2 0.3  

END STRUCTURE 

 

VARIOGRAM var2  

  VARTYPE 2 

  ANG1 0 

  ANG2 0 

  ANG3 0.0  

  A_HMAX 50000 

  A_HMIN 50000  

  A_VERT 5 

END VARIOGRAM 

 

VARIOGRAM var2c  

  VARTYPE 2 

  ANG1 60 

  ANG2 30 

  ANG3 0.0  

  A_HMAX 10000 

  A_HMIN 10000  

  A_VERT 30 

END VARIOGRAM 

 

Part of a structure file featuring three-dimensional variograms. 

A three-dimensional variogram requires specification of seven variables. These are the 

VARTYPE, A, ANG1, ANG2, ANG3, A_HMAX, A_HMIN and A_VERT variables.  

As for the two dimensional variogram, VARTYPE specifies the variogram type. This 

can be spherical, exponential, Gaussian or power, these being indicated by VARTYPE 

values of 1, 2, 3 and 4 respectively.  



PPK2FAC3D  218 

 

 

As for the two-dimensional variogram, A is the value of a in the variogram equation 

(this being the power in the case of the power variogram). See equations (5.1) to (5.4) 

of Part A of this manual; a is related to the range of the variogram. However for a 

three-dimensional variogram, three A values must be supplied, these being denoted as 

A_HMAX, A_HMIN and A_VERT. These are the values of A in the directions of 

maximum horizontal range, minimum horizontal range and vertically respectively. 

The angles (in degrees) ANG1, ANG2 and ANG3 define geometric anisotropy of the 

three-dimensional variogram. Their role are as follows. 

¶ ANG1 defines the angle between north and the direction of maximum 

horizontal anisotropy in degrees clockwise; 

¶ ANG2 defines the plunge of the direction of maximum anisotropy, that is the 

angle (positive downwards) between horizontal (in the direction defined by 

ANG1) and the direction of actual maximum anisotropy; 

¶ To quote Deutsch and Journel (1998) - ñThe third rotation angle ANG3 leaves 

the principal direction, defined by ANG1 and ANG2, unchanged. The two 

directions orthogonal to that principal direction are rotated clockwise relative 

to the principal direction when looking toward the origin.ò In the vast majority 

of cases ANG3 should be set to zero. 

Any variogram appearing in a structure file must be either a two-dimensional or three-

dimensional type. That is, it must provide values for ANG[1-3], A_HMAX, A_HMIN 

and A_VERT but not A, ANIS and BEARING; or vice versa. However any 

geostatistical structure used for three-dimensional kriging must cite only three-

dimensional variograms. If these conditions are violated, PPK2FAC3D will cease 

execution with an appropriate error message. 

A Three-Dimensional Grid Specification File 

Optionally, PPK2FAC3D obtains MODFLOW surface and layer elevations from a 

three-dimensional grid specification file. This file type constitutes an expansion of the 

usual two-dimensional grid specification file; hence the latter is a subset of the former. 

The name of one or the other of these file types must be supplied to PPK2FAC3D 

when it asks for the name of a grid specification file. It will soon establish which type 

of file it is reading; if it finds itself reading a two-dimensional grid specification file it 

will obtain grid layering information from elsewhere (see below). 

The figure below presents the format of a three-dimensional grid specification file. 



PPK2FAC3D  219 

 

 

nr ow ncol nlay  

e0 n0 rotation  

(delr(icol), icol=1,ncol)  

(delc(irow),irow=1,nrow)  

spectype  

i f spectype equals 0  

surface_elev  

(t hick(ilay),ilay=1,nlay)  

or if spectype equals 1  

array _filename _for_ top_elevation  

array_filename_for_layer_1_bottom_elevat ion  

array_filename_for_layer_2_bottom_elevation  

.  

array_filename_for_layer_nlay_bottom_elevation  

Specifications of a three-dimensional grid specification file. 

SPECTYPE is an integer. If it is supplied as zero, then the following line must contain 

one real number, this being the (assumed uniform) elevation of the top of the model. 

Following that, starting on the next line and wrapping if necessary, must be an array of 

NLAY entries containing the (assumed uniform) thickness of each model layer. 

If SPECTYPE is supplied as 1, then each of the following NLAY+1 lines of the three-

dimensional grid specification file must contain the name of a file that holds a two-

dimensional MODFLOW-compatible array. The first of these files must contain the 

cell-by-cell elevation of the surface of the model; files named on subsequent lines 

must contain cell-by-cell elevations of the bottoms of respective model layers, starting 

at 1 and finishing at NLAY. In accordance with the usual protocol of the Groundwater 

Data Utilities suite, these arrays must be preceded in their files by a number-of-

columns, number-of-rows header if COLROW is set to ñyesò in file settings.fig which 

must reside in the directory from which PPK2FAC3D is run. 

Running PPK2FAC3D 

As is standard for all other members of the Groundwater Data Utility suite, the user 

can backtrack to previous screen prompts at any stage of PPK2FAC3D execution by 

responding to the current prompt with ñeò or ñEò followed by <Enter>. 

Upon commencement of execution PPK2FAC3D looks for a settings file named 

settings.fig in the current working directory. If it does not find one, it assumes a 

COLROW setting of ñnoò. (The DATE setting is not required.) 

PPK2FAC3D next prompts for the name of a grid specification file: 

 Enter name of grid speci fication file:  

If the grid specification file is the two-dimensional type (see above), PPK2FAC3D 

then prompts: 

 How many layers in model?  

It then asks: 

 Enter filename base of layer bottom elevation array files:  

Suppose that the user responds to this prompt with the string ñbottomò. Then 

PPK2FAC3D will attempt to read two-dimensional arrays of model layer bottom 



PPK2FAC3D  220 

 

 

elevations from files bottom0.ref, bottom1.ref....bottomN.ref where N is the number of 

layers in the model. Note the following. 

¶ If COLROW is specified as ñyesò in settings.fig then a number-of-columns, 

number-of-rows header is expected in each of these array files. 

¶ The first array, namely that with an index of ñ0ò, must provide elevations of 

the top of layer 1. 

PPK2FAC3D reads the above arrays so that it can calculate the elevation of the centre 

of each grid cell. Note that layer bottom elevation arrays can be easily extracted from 

a MODFLOW ñdiscretization fileò using the MOD2ARRAY utility. Note also that 

PPK2FAC3D will not ask for the names of these files if it can obtain layer elevation 

information from a three-dimensional grid file and files cited therein. 

Next PPK2FAC3D prompts for the name of a three-dimensional pilot points file. 

Specifications for this type of file have been provided above. 

PPK2FAC3Dôs next task is to ascertain the distribution of zones within the model 

domain. This is provided through a series of integer arrays, one for each model layer. 

However the user has the alternative option of assigning a single number to the entire 

model grid. Prompts are as follows: 

 Enter filename base of layer zonal integer array files.  

 Press <Enter> if entire grid belongs to single zone:  

 Enter zone number for entire grid:  

If the user responds to the second of the above prompts simply by pressing the 

<Enter> key, then every cell in the entire model domain is assigned the same zone 

number, that number being provided in response to the third of the above prompts. 

Alternatively, suppose that a filename base of ñintzoneò is supplied in response to the 

second of the above prompts. Then PPK2FAC3D will attempt to read N two-

dimensional integer arrays from N files named intzone1.inf, 

intzone2.inf....intzoneN.inf. If COLROW is supplied as ñyesò in the settings file 

settings.fig, then each of these files must possess a number-of-columns, number-of-

rows header. 

Next PPK2FAC3D prompts for the name of a structure file. The prompt is: 

 Enter name of structure file:  

For each zone within the model domain (these being identified through their citation 

in previously-supplied layer-specific zonal integer arrays, or as a single zone number 

characterizing the entire model domain), PPK2FAC3D asks: 

 Enter structure name for zone with integer value of 1:  

 Perform simple or ordinary kriging [s/o]:  

 Enter search radius in maxi mum horizontal elongation dirn:  

 Enter search radius in minimum horizontal elongation dirn:  

 Enter search radius in vertical dirn:  

 Enter minimum number of points to use for interpolation:  

 Enter maximum number of pilot points to use for interpolation:   

Finally it asks for the name of the file in which it must store the kriging factors which 

it calculates: 



PPK2FAC3D  221 

 

 

 Enter name for interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  

It then computes kriging factors, writes the kriging factor file, and ceases execution. 

Uses of PPK2FAC3D 

PPK2FAC3D is used in conjunction with the FAC2REAL3D utility. The latter reads 

kriging factors computed by PPK2FAC3D, as well as a three-dimensional pilot points 

file. It then undertakes three-dimensional interpolation to the centres of cells of a 

three-dimensional MODFLOW grid. 

See Also 

PPK2FAC, PPK2FAC2, PPK2FAC3 and FAC2REAL3D. 

Reference 

Deutsch, C and Journel, A., 1998. GSLIB Geostatistical Software Library and Userôs 

Guide. Second Edition. Oxford University Press. 



PPK2FACR  222 

 

 

PPK2FACR 

Function of PPK2FACR 

The role of PPK2FACR is very similar to that of PPK2FAC, PPK2FAC1 and 

PPK2FACF in that it computes kriging factors. However, in contrast to the above 

programs, PPK2FACR was build for use with the RSM (Regional Simulation Model) 

developed by the South Florida Water Management District. Like other members of 

the PPK2FAC family, it also generates regularisation data for optional later inclusion 

in a PEST input dataset. However in doing this it adopts the same protocols as used by 

PPK2FAC1 rather than PPK2FAC. Hence PPKREG1 (rather than PPKREG) must be 

employed to add this information to a PEST control file. 

Using PPK2FACR 

Use of PPK2FACR is very similar to that of other members of its suite; hence only 

differences between it and those other members are discussed herein. 

PPK2FACR commences execution with the prompt:- 

 Enter name of GMS two - dimensional mesh file:  

This is the type of mesh file employed by the RMS model (as well as the GMS 

graphical user interface). An example of a small such file is provided below. 



PPK2FACR  223 

 

 

MESH2D 

E3T     1    1     6     2     1      

E3T     2    2     7     3     1      

E3T     3    3     8     4     1      

E3T     4    5    10     6     1      

E3T     5    6    11     7     1      

E3T     6    7     12     8     1      

E3T     7    9    14    10     1     

E3T     8   10    15    11     1      

E3T     9   11    16    12     1      

E3T    10    1     5     6     1      

E3T    11    2     6     7     1      

E3T    12    3     7     8     1      

E3T    13    5     9    10     1      

E3T    14    6    10    11     1      

E3T    15    7    11    12     1      

E3T    16    9    13    14     1      

E3T    17   10    14    15     1      

E3T    18   11    15    16     1      

ND  1       0.000      15000.000 0.  

ND  2    5000.000      15000.000 0.  

ND  3   10000.000      15000.000 0.  

ND  4   15000.000      15000.000 0.  

ND  5       0.000      10000.000 0.  

ND  6    5000.000      10000.000 0.  

ND  7   10000.000      10000.000 0.  

ND  8   15000.000      10000.000 0.  

ND  9       0.000       5000.000 0.  

ND 10    5000.000       5000.000 0.  

ND 11   10000.000       5000.000 0.  

ND 12   15000.000       5000.000 0.  

ND 13       0.000          0.000 0.  

ND 14    5000.000          0.000 0.  

ND 15   10000.000          0.000 0.  

ND 16    15000.000          0.000 0.  

A two-dimensional mesh file of the type employed by the RSM model. 

Next PPK2FACR prompts for the name of a pilot points file:- 

 Enter name of pilot points file:  

and then, as for other members of this family, it asks:- 

 Enter  minimum allowable points separation:  

If any two pilot points are closer together than the separation supplied in response to 

this prompt, PPK2FACR will cease execution with an appropriate error message. Note 

that ñzeroò is a suitable response to this prompt. 

PPK2FACR next asks:- 

 Read zonal index file? (y/n):  

and, if the answer is ñyò:- 

 Enter name of zonal index file:  

The latter file must employ RSM ñindex fileò format, which supplies a value to every 

element in the mesh. The assignment of values to elements in this fashion constitutes 

a means of mesh zonation. As is discussed below, different pilot points can be 

assigned to different zones; interpolation from pilot points to mesh elements within 

each zone is then undertaken separately so that inter-zonal property discontinuities can 



PPK2FACR  224 

 

 

be introduced.  The figure below shows an example of a zonal index file. Data must 

be comprised of integers, one for each element of the mesh. These must be arranged in 

order of increasing element index number.  

DATASET 

OBJTYPE "network"  

BEGSCL 

ND 18  

NAME "segment index"  

TS 0 0.0  

1 

1 

1 

2 

1 

1 

2 

2 

1 

2 

1 

1 

2 

2 

1 

2 

2 

2 

A zonal index file. 

Alternatively, if the user requests that a zonal index file not be read, PPK2FACR 

generates kriging factors for the entire mesh from all points nominated in the pilot 

points file. 

Next PPK2FACR prompts for the name of a structure file.  

 Enter name of structure file:  

This file contains definitions of one or more geostatistical structures on which 

computation of kriging factors will be based. See documentation of PPK2FAC for 

further details. 

Next, for each zone defined in the zonal index file, PPKFACR issues the following 

series of prompts:- 

 For zone characterised by integer value of 1: -  

   Enter structure name (blank if no interpolation for this z one):  

   Perform simple or ordinary kriging [s/o]:  

   Enter search radius:  

   Enter minimum number of pilot points to use for interpolation:  

   Enter maximum number of pilot points to use for interpolation:  

See documentation of PPKFAC for more details. 

Finally PPK2FACR prompts for the name of the kriging factors file which it must 

write and for its formatted/unformatted (i.e. binary) status:- 

 Enter name for interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  



PPK2FACR  225 

 

 

and finally for the name of a file in which it should store regularisation data:- 

 Enter name for regularisation information file:  

It then computes and stores kriging factors, and writes information to the 

regularisation information file. Kriging factors are subsequently used by the 

FAC2RSM utility in carrying out the actual spatial interpolation from pilot points to 

mesh elements. The regularisation information file is available for the use of the 

PPKREG1 utility in adding regularisation prior information equations to a PEST 

control file. 

In computing interpolation factors PPK2FACR assumes that interpolation takes place 

from pilot points to the centroid of each mesh element. PPK2FACR computes the 

locations of these centroids itself. 

Uses of PPK2FACR 

PPK2FACR is a vital component of pilot points parameterisation of an RSM model. If 

calibration is undertaken using PEST, PEST assigns values to these pilot points. 

Interpolation from them to mesh elements is undertaken by FAC2RSM on the basis of 

kriging factors calculated by PPK2FACR. Calculation of kriging factors can be far 

more time-consuming than carrying out the actual interpolation. By computing these 

ahead of the interpolation process, this step can be omitted from the model that is run 

many times by PEST during the calibration process, thereby resulting in a lowering of 

the time required for completion of the PEST run. 

See Also 

See also FAC2RSM, RSM2SRF and RDAT2TAB. 



PPK2FAC_FEFL  226 

 

 

PPK2FAC_FEFL 

Function of PPK2FAC_FEFL 

PPK2FAC_FEFL performs a similar role to that of programs PPK2FAC, PPK2FACF, 

PPK2FACR, etc in that it generates kriging factors through which spatial interpolation 

is undertaken from pilot points to model elements. PPK2FAC_FEFL performs this 

role for the FEFLOW finite element model. As well as generating kriging factors, it 

also generates information that can be employed for subsequent introduction of 

regularisation to a PEST control file in which pilot-point-based parameters are 

featured. Kriging factors computed by PPK2FAC_FEFL are used by 

PPK2FAC_FEFLôs sister program FAC2FEFL which carries out the actual spatial 

interpolation from pilot points to the FEFLOW mesh. FAC2FEFL often comprises 

part of a ñmodelò, encapsulated in a batch or script file, which is run many times by 

PEST in the course of optimising pilot point (and other) parameter values. 

Using PPK2FAC_FEFL 

Prompts and User Responses 

Use of PPK2FAC_FEFL is not significantly different from that of other members of 

the PPK2FAC family. Hence only a brief description of its operations (concentrating 

on differences between this program and its kindred programs) is presented herein. 

See other sections of this manual (particularly documentation of PPK2FAC) for 

further details. 

Like all other programs of the Groundwater Data Utilit y suite, PPK2FAC_FEFL 

allows a user to backtrack from a current prompt to a previous prompt to rectify any 

mistakes that he/she may have made in responding to that prompt. This is achieved 

through responding to the current prompt with ñeò (for ñEscapeò) followed by 

<Enter>. 

PPK2FAC_FEFL screen output, and user responses to PPK2FAC_FEFL prompts, for 

a typical PPK2FAC_FEFL run are shown below. (User responses are depicted in bold 

italicised type.) 

Program PPK2FAC_FEFL calculates point - to - element factors by which kriging is  

   undertaken from a set of pil ot points to a FEFLOW mesh.  

 

 Enter name of FEFLOW FEM file for current project: project .fem  

 

 Enter name of FEFLOW element property file: em.dat  

  -  data for 92829 elements read from element property file em.dat  

 

 Enter name of pilot points file: pp.dat  

  -  data for 27 pilot points read from pilot points file pp.dat  

 

 Enter minimum allowable points separation: 0 

 

 Enter name of structure file: struct.txt  

 

 The following zones have been detected in the element property file: -  



PPK2FAC_FEFL  227 

 

 

 

    For zone characterised by integer value of 1: -  

    Enter structure name (blank if no interpolation for this zone):  <Enter>  

 

    For zone characterised by integer value of 2: -  

    Enter structure name (blank if no interpolation for this zone): struct1  

    Perform simple or ordinary kriging [s/o]: o 

    Enter search radius: 1e20  

    Enter minimum number of pilot points to use for interpolation: 3 

    Enter maximum number of pilot points to use for interpolation: 8 

 

    For zone characterised by integer value of 3: -  

    Enter structure  name (blank if no interpolation for this zone):  <Enter>  

 

 Enter name for interpolation factor file: factors.dat  

 Is this a formatted or unformatted file? [f/u]: f  

 

 Enter name for regularisation information file: reg.dat  

 

 Carrying out interpolation for z one 2....  

 

   Number of pilot points for this zone     =    27  

   Mean data value for these pilot points   =   14.000  

   Data standard deviation for these points =   7.7889  

   Working....  

   No. of elements for which factors were calculated        =  30943  

   No. of elements beyond search radius of any pilot point  =      0  

 

  -  kriging factors written to file factors.dat  

  -  regularisation information written to file reg.dat  

PPK2FAC_FEFL commences operations by opening the FEFLOW ñfemò input file 

for the current model; it reads from this file the number of elements in the model 

domain.  

PPK2FAC_FEFL next reads an ñelement property fileò. This is a file that must be 

exported from FEFLOW by the user. See the next subsection for details. The first few 

lines of a typical element property file are shown in the figure below. 

 

   

   ELEM  LAYER            X               Y               Z                   F  

      1      1    73541.8444896667  8460384.0101699997     20.57783333      1.00  

      2      1   133405.594 4896667  8450245.7393366657    105.09966667      1.00  

      3      1   138278.2507396667  8369087.4893366667     82.29783333      1.00  

      4      1   117906.1101146667  8363388.8018366667    111.38166667      1.00  

      5      1   133744.0736563334  8394 474.3643366657     96.85883333      1.00  

      6      1   144707.7559480000  8382273.5310033327     66.54083333      1.00  

      7      1   141873.8705313334  8372043.3435033327     80.98366667      1.00  

      8      1   111523.2351146667  8375981.801836666 7    204.01000000      1.00  

      9      1   103691.3965730000  8385102.5726699997    131.89800000      1.00  

     10      1   207472.6361563333  8303504.1351699997    171.03616667      1.00  

     11      1   109153.3601146667  8380700.6976699997    232.0073 3333      1.00  

     12      1    84339.4903230000  8461949.8018366657     44.89433333      1.00  

     13      1   110151.6674063334  8377364.5518366667    206.97566667      1.00  

     14      1   106335.4851146667  8382501.0935033327    183.28333333      1.0 0 

     15      1   101455.3184480000  8468199.2393366657     61.68633333      2.00  

     16      1   101939.1049063334  8396911.2601699997    131.61033333      2.00  

     17      1   107046.1205313334  8380231.2810033327    194.08133333      2.00  

     18      1   212998.8340730000  8319898.6976699997    150.70183333      2.00  

     19      1    92884.0007396667  8458993.3435033336     39.23600000      2.00  

     20      1   105327.7194896667  8428316.5726699997     78.42116667      2.00  

     21      1   242948. 7299063333  8391365.7185033336    187.82216667      2.00  

     28      1   114709.1153230000  8418550.1976699997     60.00183333      2.00  

 

Part of an element property file. 



PPK2FAC_FEFL  228 

 

 

The first line of an element property file contains the column headers depicted in the 

above figure. Then follows data arranged in columns. Within each row of this file the 

first column contains the number of a node. These are arranged in increasing 

sequential order; all nodes within the mesh must be represented (see below). The 

easting, northing and elevation of each node follow. Then follows the material 

property value associated with that node. PPF2FAC_FEFL actually interprets entries 

in this column as zone numbers, in spite of the fact that these are actually real 

numbers (and are recorded by FEFLOW as material property values). Before 

exporting this file, it is the userôs responsibility to supply values for the pertinent 

material property to all elements of the FEFLOW model, with these values being 

actually surrogate zone values. Normally only one, or a small number of zones, need 

be represented in a model. PPK2FAC_FEFL obtains a zone number from a property 

value through approximating that property value by its nearest integer. 

After this file is exported, there may not be any need to alter pertinent material 

property values within the FEFLOW interface to something other than integers which 

represent zone numbers. As will be explained below (and as is also explained in 

documentation to program FAC2FEFL) if, for a particular material property, all 

elements within a model are to be assigned values on the basis of interpolation from 

pilot points, replacement of zone values by pertinent property values will take place at 

the level of the FEFLOW ñfemò input file. 

PPK2FAC_FEFL obtains the following information from the element property file:- 

1. the easting and northing of each finite element mesh centroid of the current 

model (it is to these coordinates that spatial interpolation takes place from pilot 

points); 

2. the zone to which each element belongs. 

As is discussed in documentation of the PPK2FAC utility, different pilot points, and 

different geostatistical structures on the basis of which kriging factors are calculated, 

can be assigned to different zones. Alternatively, a zone may have no pilot points and 

no geostatistical structure assigned to it; hence interpolation will not take place from 

pilot points to elements within that zone. In the latter case, material property values 

will not be altered from those already assigned to elements within the zone when 

FAC2FEFL alters a FEFLOW ñfemò file prior to a FEFLOW model run. 

Other information sought from the user by PPK2FAC_FEFL is similar to that sought 

by other PPK2FAC programs. The reader is referred to documentation of those 

programs for details. 

Exporting an Element Property File  

An element property file is generated by exporting flow material properties from 

FEFLOW in ñdatò file format. This produces a tab-delimited ASCII file with the 

following fields (see the above example):- 

¶ element number,  



PPK2FAC_FEFL  229 

 

 

¶ layer number,  

¶ X coordinate, 

¶ Y coordinate, 

¶ Z coordinate, and 

¶ F value (i.e. property value, for example Kxx). 

To export this file, the following steps are required. 

1. Open the FEM file pertaining to the current model using the FEFLOW 

graphical user interface. 

2. Select ñEditò, then ñEdit problem attributesò, then ñFlow dataò, then ñFlow 

materialsò from respective FEFLOW menus. 

3. Select ñSpecialò from the ñToolsò list (see below). 

 

FEFLOW menu system for exporting of a element data file. 

4. Select the property to be exported (e.g. ñConductivity [Kxx]ò). The FEFLOW 

ñData View, Operation and Exportò dialog box then opens. 

5. From the ñSave as plot fileéò area of this box, change ñSave nodal materials 

as pointsò to ñSave centre materials as pointsò. 

6. Select ñASCII Databases (XYZF) (*.dat)ò as the file type option, and provide a 

name for the file. 

7. Click on ñyesò when asked by FEFLOW whether to ñExport quantities for all 

slicesò. 



PPK2FAC_FEFL  230 

 

 

Non-Interpolation 

There are two reasons why interpolation factors will not be assigned to a particular 

element of the FEFLOW mesh. In particular, 

¶ if an element is assigned to a zone to which no pilot points are assigned, or 

¶ if an elementôs location is such that it is separated by more than one search 

radius from all pilot points assigned to its zone, 

then no interpolation from pilot points can take place to that element. 

In contrast to other interpolation programs provided with the Groundwater Data 

Utilit y suite, when FAC2FEFL undertakes spatial interpolation to the FEFLOW mesh 

on the basis of kriging factors calculated by PPK2FAC_FEFL, it does not ask the user 

what value should be assigned to elements for which no interpolation factors have 

been calculated. Instead it simply retains property values that are already assigned by 

FEFLOW to those elements when it writes a new FEFLOW ñfemò input file through 

modification of an existing one. Thus elements (including entire layers) for which no 

pilot point parameter definition is desired can all be assigned to a single zone to which 

neither pilot points nor a geostatistical structure is assigned. 

The user should be very careful, however, that lack of kriging factor computation for 

certain elements is not an unwanted outcome of providing PPK2FAC_FEFL with an 

interpolation search radius which is too small. In reporting the results of the kriging 

factor computation process for each zone, PPK2FAC_FEFL writes to the screen the 

number of elements within each such zone for which kriging factors could not be 

computed for this reason. If this number is not zero, it is flagged with a ñWARNINGò 

string. Under most circumstances, on receiving such a warning, the user should re-run 

PPK2FAC_FEFL, asking for a larger search radius. (It is normally good practice to 

provide an effectively infinite search radius of 1.0E20, and limit the number of pilot 

points involved in spatial interpolation to any element through an appropriate response 

to the ñenter maximum number of pilot points to use for interpolationò prompt. 

Model Layering 

As for other programs of the PPK2FAC family, kriging factors implement only 

horizontal interpolation. Nevertheless, the element property file should cite all 

elements within a model mesh, irrespective of the layer to which each element is 

assigned. In many cases it will be desirable that all model layers comprising a 

particular hydrostratigraphic unit be assigned the same hydraulic property value. In 

this case all elements within any vertical column of that hydrostratigraphic unit should 

be assigned to the same zone; because elements with the same easting and northing 

will automatically be assigned the same kriging factors from the same set of pilot 

points, this will guarantee that the interpolated material property is the same for all 

such cells.  

In other modelling circumstances it may be desired that different properties be 

assigned to cells in different model layers. This is easily achieved by assigning 



PPK2FAC_FEFL  231 

 

 

elements in different layers to different zones. Pilot points must then be assigned 

separately to each such zone within the pilot point file whose name is supplied to 

PPK2FAC_FEFL. There is no reason why pilot points assigned to different layers 

cannot be placed at the same horizontal locations. (This can be achieved through 

appropriate cutting and pasting in the pilot points file.) However pilot point names 

must be different for the different layers (a discriminatory pilot point name prefix will 

easily achieve this). 

Regularisation Data 

As for other members of the PPK2FAC family, PPK2FAC_FEFL writes a 

regularisation information file. This can be used by the PPKREG1 utility for adding 

regularisation prior information to a PEST control file. (Alternatively, the PEST 

ADDREG1 utility can be used for the same purpose.) 

Uses of PPK2FAC_FEFL 

PPK2FAC_FEFL is used, in conjunction with FAC2FEFL, for implementation of 

pilot-point-based parameterisation of a FEFLOW model. Though the manner in which 

kriging factors are calculated is the same for PPK2FAC_FEFL as it is for other 

members of the PPK2FAC family, there is an important difference where multi-

layered models are employed, in that all pilot points employed for spatial interpolation 

to all model layers must be cited in the same pilot points file. Where there is no 

vertical variation of hydraulic properties between a number of juxtaposed model 

layers, elements within all pertinent layers should be assigned to the same zone as that 

to which pilot points belonging to the hydrostratigraphic unit encompassing these 

layers are assigned. However where different layers, or different groups of layers, 

must be assigned different values through interpolation from different sets of pilot 

points, the layers pertaining to different hydrostratigraphic units must be assigned to 

different zones; all pilot points for all zones must be then be represented in the single 

pilot points file read by PPK2FAC_FEFL (and subsequently by FAC2FEFL). 

The DAR2SMP utility provides a means through which FEFLOW outputs can be 

rapidly processed for inclusion in a PEST-based calibration process. 

See Also 

See also PPK2FAC, PPK2FAC1, PPK2FACF, PPK2FACR, FAC2FEFL, PPKREG1 

and DAR2SMP. 



PPKREG  232 

 

 

PPKREG 

Function of PPKREG 

Where a PEST control file has been constructed to estimate hydraulic property values 

at pilot point locations, regularisation information can be automatically incorporated 

into the parameterisation process using PPKREG. This information is added to the 

PEST control file in the form of a set of prior information equations pertaining to 

preferred differences between property values (or their logs) assigned to the pilot 

points. The weight assigned to each of these prior information equations can be the 

same for each, or it can be calculated according to the separation between the 

respective pilot points. In the latter case the weight is calculated as proportional to the 

inverse of the nested variogram pertaining to the zone in which the pilot points are 

situated. Geostatistical information by which this calculation is made is read from a 

ñregularisation information fileò produced by program PPK2FAC. 

The use of pilot points for groundwater model parameterisation is often accompanied 

by a tendency to over-parameterise the problem (ie. to attempt to estimate property 

values at more pilot point locations than it is within the capacity of the calibration 

dataset to achieve with any degree of uniqueness). This is not necessarily a bad thing, 

because one of the benefits of using pilot points for spatial parameterisation is that a 

superfluity of these points can allow PEST to determine the locations at which 

geological heterogeneity must be introduced in order to achieve a good fit between 

model outcomes and corresponding field measurements. However in order for this 

process to work, it is essential that regularisation constraints (normally in the form of 

ñhomogeneity constraintsò or ñsmoothness constraintsò) be incorporated into the 

parameter estimation process. This is most easily achieved using PPKREG. 

Using PPKREG 

Prior to Using PPKREG 

A number of conditions must be satisfied if PPKREG is to be used for introducing 

regularisation information into a parameter estimation problem. These are as follows:- 

1. The PEST control file to which regularisation constraints are to be 

introduced must include one or a number of different types of parameters 

linked to a set of pilot points. These parameter types can represent different 

hydraulic properties, or the same hydraulic property in different model 

layers.  

2. The name of each parameter that is linked to a pilot point must include the 

name of the pilot point (as named in the pilot points file) to which it is 

linked. Each parameter of a particular type must have the same prefix (or 

no prefix at all), followed by the pertinent pilot point name. The prefix can 

be up to two characters in length. 



PPKREG  233 

 

 

3. A PPKREG run must be preceded by a PPK2FAC run. Normally this will 

have been done as a matter of course, for the interpolation factor file 

generated by PPK2FAC will be required by FAC2REAL for array 

generation as part of a composite model run by PEST, or will be used by 

FAC2MF2K to modify a MODFLOW-2000 dataset such that it includes 

pilot-point-based parameters. (The MODFLOW-2000 input dataset can 

then be translated to PEST format using the MODFLOW2000-to-PEST 

translator, MF2PEST.) The regularisation information file generated by 

PPK2FAC is then used by PPKREG for adding prior information to the 

pilot-point-based PEST control file.  

4. Where different parameter types in a PEST control file pertain to different 

sets of pilot points, PPKREG must be run twice in order to add different 

sets of regularisation prior information to the PEST control file based on 

the different sets of pilot points. 

Note that it is not essential that every parameter cited in a PEST control file be linked 

to a pilot point. Those parameters which are not linked to a pilot point are simply 

omitted from any regularisation information that is introduced to the PEST control file 

by PPKREG. However care must be taken where parameters are omitted from 

inclusion in regularisation constraints; as is explained in the documentation to PEST-

ASP, if regularisation is introduced to a parameter estimation problem in order to 

render it numerically more tractable, it may not live up to expectations unless all 

parameters (or at least the vast majority or parameters) are included in the 

regularisation process. 

Running PPKREG 

PPKREG begins execution by prompting for the name of an existing PEST control 

file:- 

 Enter name of PEST control file:  

Supply a name as appropriate. PPKREGôs task is to write a new PEST control file 

based on this existing PEST control file; in the new control file PEST is asked to run 

in regularisation mode. Regularisation constraints in the form of prior information will 

be included in this new PEST control file, and a ñregularisationò section will be 

appended to the end of the file. If any prior information is present within the original 

PEST control file, this will be included in the new PEST control file. However an 

existing ñregularisationò or ñpredictive analysisò section will be ignored. 

PPKREG next prompts for the name of a PPK2FAC-generated regularisation 

information file. Its prompt is:- 

 Enter name of regularisation information file:  

As is explained in the documentation to PPK2FAC, this file lists the names of the 

pilot points contained in the pilot points file upon which PPK2FAC based its 

calculation of kriging factors; it also contains nested variogram values for each pair of 



PPKREG  234 

 

 

pilot points that are jointly used for interpolation to at least one cell centre. This latter 

condition limits the provision of regularisation information to points which are in the 

same zone, and which are ñclose enough togetherò, as defined by the search radius or 

ñmaximum number of points for interpolationò criterion supplied to PPK2FAC when 

it generated the kriging factors. Hence these variables can be used to limit the number 

of prior information equations added by PPKREG to an existing PEST control file. 

Basically, the smaller is the search radius, and the fewer the maximum number of 

points used for interpolation, the fewer will be the number of prior information 

equations containing regularisation information added to the PEST control file. Often 

PPK2FAC will be run only once in the course of preparation for pilot-point-based 

parameterisation. In this case the same variables used in the calculation of kriging 

factors will be used in the calculation of regularisation information. However the 

modeller is free to undertake a separate PPK2FAC run (using a different search radius 

and/or specifying a different value for the maximum number of points used for 

interpolation) for each of these separate purposes if he/she feels that this is warranted. 

Next PPKREG prompts:- 

How many pilot - point - based parameter families in PEST control file  

pertain to this regularisation information file:  

As was discussed above, each type (or family) or pilot-point-based parameters 

featured in the one regularisation information file must have its own parameter name 

prefix of up to two characters in length (or no prefix at all if desired). The remainder 

of the name of each parameter must be the same as the name of the pilot point that it 

represents. Note also, that a PEST control file may contain different sets of pilot 

points pertaining to different hydraulic properties; the regularisation information 

pertaining to each of these sets may reside in different regularisation information files. 

PPKREG will then need to be run for each set separately. This is a perfectly 

acceptable procedure; the user only needs to ensure that pilot points are named 

according to different protocols within the different pilot point groups whose 

regularisation information resides, in turn, in different regularisation information files.  

For each family of pilot-point-based parameters pertaining to the one regularisation 

information file, PPKREG asks the following questions:- 

For family number n: -  

   Enter pa rameter prefix (<Enter> if none):  

   Apply uniform or geostatistical regularisation? [u/g]:  

   Enter weight multiplier:  

   Enter new regularisation group name:  

   Enter root name for new prior information:  

  

The answer to the first of the above questions serves to distinguish one pilot-points-

based parameter set from another where both are based on the same set of pilot points 

for which regularisation is contained within the one pilot points file; supply the prefix 

as appropriate. 

For each pair of points for which a variogram value is supplied in the regularisation 

information file, PPKREG generates one prior information equation. This equation 

expresses the fact that the difference between the corresponding parameter values (ie. 

the hydraulic property values assigned to these pilot points) is zero; if the parameters 



PPKREG  235 

 

 

are log-transformed in the ñparameter dataò section of the PEST control file, then the 

pertinent prior information equation states that the difference between the logs of the 

respective parameter values is zero. The weight applied to each such item of prior 

information can be the same (ñuò option in answering the second of the above 

prompts). Alternatively, the weight can be calculated as the inverse of the square root 

of twice the magnitude of the nested variogram pertaining to the two points 

comprising the pair. This method of calculating the weight is in harmony with the fact 

that the square root of twice the variogram is equivalent to the standard deviation of 

the parameter difference, if the statistical dependence of this difference on point 

separation, as characterised by the variogram, is correct. 

The third of the above prompts requires that a weight multiplier be supplied. If 

uniform weights assignment is undertaken, this is the value of the weight assigned to 

all articles of regularisation prior information. If geostatistically-based weights are 

calculated, this acts as a multiplier (applicable to all regularisation prior information 

equations) for weights calculated on the basis of variogram values in the manner 

described above. 

PPKREG assigns regularisation information to a ñregularisation subgroupò. Since 

version 6.0, PEST has allowed the existence of multiple regularisation groups within 

the one PEST control file. The name of each such group must begin with the 

characters ñregulò. In the fourth of the above prompts, PPKREG asks the user for the 

name of the group to which the new pilot-point-based regularisation equations should 

be assigned. This name must begin with ñregulò and must be different to the name 

assigned to any other regularisation subgroup within PPKREG, or already existing 

within the PEST control file. (Note that PEST can adjust the relative weighting 

attached to different regularisation subgroups during the inversion process; this is 

done if the regularisation control variable IREGADJ is set to 1. When writing the 

ñregularisationò section of the PEST control file, PPKREG supplies a value of 1 to 

IREGADJ, thus asking PEST to implement this automatic inter-group weights 

assignment procedure. If this is not desired, it can be rectified by direct editing of the 

PEST control file.) 

Finally PPKREG prompts for the root name of the prior information equations that it 

writes to encapsulate the regularisation information. Supply a string of 6 characters or 

less; PEST will affix an equation number to this string when naming prior information 

equations. The user should ensure that the resulting prior information name does not 

conflict with any names that may already be represented within the existing PEST 

control file to be modified by PPKREG (PESTCHEK will soon inform you if this 

condition has been violated). 

Next PPKREG searches for linkages between parameters and pilot points; as was 

discussed above, parameters and pilot points are linked through their names. 

Parameters not linked to any pilot points are listed to the screen; PPKREG asks the 

user to verify that it is alright to continue execution, even though not all of the 

parameters cited in the PEST control file are pilot-point-based. (When running 

PPKREG multiple times in order to sequentially add regularisation information 



PPKREG  236 

 

 

pertaining to more than one regularisation group, the list of unlinked pilot points on 

any one PPKREG run may be very large; do not be perturbed by this.) 

Next PPKREG prompts for the name of the new PEST control file which it must 

write:- 

 Enter name of new PEST control file:  

and, finally, for some information to use in the ñregularisationò section of this file:- 

 Enter target measurement objective function PHIMLIM:  

 Enter initial regularisation weight factor WFINIT:  

 Enter min. reg. weight fact or WFMIN ( <Enter> if 1.0000E - 10):  

 Enter max. reg. weight fact or WFMAX ( <Enter> if 1.0000E+10 ):  

As is explained in the documentation to PEST-ASP, the first of these quantities 

should be set slightly above the objective function minimum that it is possible to 

achieve without the imposition of regularisation constraints. Alternatively, if this is 

not known, it should be set at some reasonable value calculated from an anticipated, 

or acceptable, level of model-to-measurement misfit. The initial weight factor 

WFINIT (see the second of the above prompts) can mostly be set to 1. Default upper 

and lower weight factor bounds, set at 10
10

 and 10
-10

 times the initial weight factor, 

are supplied in the pertinent prompts for these quantities by PPKREG. These can be 

accepted by simply pressing the <Enter> key in each case. However the user should 

monitor the weight factors calculated by PEST as the optimisation process progresses 

in order to establish whether these bounds should be set wider or narrower. 

Warnings and Error Conditions 

Use of PPKREG is quite straightforward. However a few simple rules should be 

observed. Where PPKREG notices any violations of these rules it will issue an 

appropriate error or warning message; however in some cases it may not be aware that 

a rule has been violated, in which case a warning cannot be issued. The rules are listed 

hereunder. 

1. If kriging for a particular parameter type is based on a geostatistical 

structure (as recorded in a structure file read by PPK2FAC) in which the 

TRANSFORM type is ñlogò, then all parameters of this type should be log-

transformed in the parameter estimation process. Thus any regularisation 

information introduced to the PEST control file based on that parameter 

type will pertain to the logs of the pertinent parameter value differences 

rather than to the parameter value differences themselves. If the 

geostatistical option is selected for weights calculation, then these weights 

will be based on a nested variogram that depicts the logarithmic nature of 

the geostatistical structure pertaining to that parameter. Similarly, if 

TRANSFORM is set to ñnoneò for the pertinent geostatistical structure, 

and regularisation information is geostatistically weighted, then the 

parameter should not be log-transformed in the parameter estimation 

process. Note, however, that neither PPKREG nor PEST will object if 



PPKREG  237 

 

 

these rules are violated, for they have no knowledge of the geostatistical 

structure underlying weights calculation. 

2. PPKREG will object, however, if an attempt is made to impose a 

regularisation constraint on the difference between the values assigned to 

two pilot-point-based parameters if one is log-transformed in the existing 

PEST control file and the other is not. 

3. If there are any parameters in the existing PEST control file which are part 

of a pilot point family, but which are not linked to any other pilot points 

through regularisation information contained in the regularisation 

information file, PPKREG will list such points to the screen and ask if this 

is alright. This can happen if, for example, there is only one pilot point 

assigned to a particular zone (in which case the zone is effectively 

homogeneous), or if the search radius used when running PPK2FAC was 

not large enough. If you ignore this warning, you can add pertinent prior 

information regularisation constraints pertaining to this parameter to the 

PEST control file yourself if you wish. 

4. If there are any pilot-point-based parameters that are linked to only one 

other pilot-point-based parameter through regularisation prior information, 

then PPKREG will issue a similar warning. 

5. If a parameter is tied to another parameter, it cannot be included in prior 

information. Hence all regularisation information linking such a parameter 

to any other parameters in the regularisation information file is ignored. 

6. The same holds for fixed parameters. 

Uses of PPKREG 

As has already been described, PPKREG facilitates the introduction of prior 

information to a PEST control file in which parameters are based on pilot points. Use 

of this prior information in the parameterisation process attempts to ensure that 

estimated parameters adhere to the geostatistical structure of an area where this is 

known. Different families of pilot points parameters can be used for different 

parameter types. These can be based on the one set of pilot points (in which case a 

single PPKREG run can be used to add regularisation information pertaining to all 

such parameters) or on different sets of pilot points for which regularisation is stored 

in multiple regularisation information files (in which case multiple PPKREG runs will 

be required). 

PPKREG is most useful where MODFLOW/MT3D-based parameterisation is carried 

out using FAC2REAL in conjunction with MODFLOW/MT3D, or where a 

MODFLOW-2000 input dataset was built with the help of FAC2MF2K, the latter 

program being used to introduce pilot-point-based parameters to an existing 

MODFLOW-2000 input dataset. In the latter case, the set of MODFLOW-2000 input 

files must be translated to PEST format using the MODFLOW2000-to-PEST 

translator, MF2PEST. Once this has been done, regularisation information can be 



PPKREG  238 

 

 

added to the pertinent PEST control file using PPKREG using the instructions 

provided herein. 

See Also 

See also FAC2MF2K, FAC2REAL and PPK2FAC 



PPKREG1  239 

 

 

PPKREG1 

Function of PPKREG1 

PPKREG1 is an advanced version of PPKREG. Like PPKREG, it is used to add prior 

information to a PEST control file, with this prior information encapsulating 

regularisation constraints on the inversion process; the purpose of these constraints is 

to provide a ñpreferred system conditionò, the use of which adds numerical stability to 

the inversion process. However PPKREG1 provides more regularisation alternatives 

than PPKREG, the latter only providing a ñsmoothing regularisationò option in which 

a set of prior information equations is provided expressing the fact that the difference 

between pairs of parameter values (or the logs of these values) is preferentially zero. 

PPKREG1 provides the user with the option of using an alternative form of 

regularisation referred to as ñpreferred valueò regularisation herein. In implementing 

this form of regularisation, prior information equations are provided in which each 

parameter (or its log) is assigned a preferred value. A single such value can be 

assigned to all parameters, or values can be assigned individually. A single weight can 

then be assigned to each pertinent prior information equation, or a covariance matrix 

can be assigned to the family of prior information equations based on a geostatistical 

characterisation of parameter variation. 

PPKREG1 allows the user to adjust regularisation weights (or components of the 

regularisation covariance matrix) in accordance with data density. Thus greater 

weights can be assigned to prior information equations pertaining to parameters that 

are far removed from observation points in comparison to prior information equations 

which cite parameters that are relatively close to observations points. 

Using PPKREG1 

General 

PPKREG1 has much in common with PPKREG. The discussion below focuses on the 

differences between these two programs; see documentation of PPKREG for a 

discussion of functionality that is common to both of them. 

PPKREG1 execution is initiated by typing its name at the command-line prompt. 

Upon commencement of execution it prompts for the name of an existing PEST 

control file. PPKREG1ôs task is to add prior information, and a regularisation section, 

to this PEST control file. If the existing PEST control file already possesses a 

regularisation section, this section will be overwritten. 

After reading the existing PEST control file, PPKREG1 prompts:- 

Enter name of regularisation information file:  

This file will have been written by PPK2FAC1 (not PPK2FAC, which is superseded 

by PPK2FAC1). FAC2REAL calculates kriging factors for spatial interpolation from a 

set of pilot points to the model grid for the purpose of constructing a MODFLOW-



PPKREG1  240 

 

 

compatible real array. It also records geostatistical information pertaining to the 

physical property values which are sampled at pilot point locations. This information 

is based on the contents of the structure file read by PPK2FAC1, and on the userôs 

responses to prompts issued by PPK2FAC1 during its execution. 

Next PPKREG1 asks:- 

How many pilot - point - based parameter families in PEST control file  

pertain to this regularisation information file:  

Supply a number no lower than unity; as is explained in the documentation to 

PPKREG, each set of parameters which is based on the same set of pilot points must 

have a different parameter prefix (which can be the ñnull prefixò if desired) affixed to 

the names of respective pilot points. 

PPKREG1 now issues a series of prompts for each family of pilot point parameters 

that pertain to the nominated regularisation information file. The first of these prompts 

requests the name of the prefix which characterises that parameter family:- 

Enter parameter prefix (<Enter> if none):  

Smoothness Regularisation 

PPKREG next prompts for the type of regularisation to which that family of 

parameters will be subject:- 

Apply smoothness or preferred value regularisation? [s/p]:  

If you respond with an ñsò to the above prompt, PPKREG1 will write the same set of 

regularisation prior information equations as those written by PPKREG; see 

documentation of PPKREG for details. Furthermore, like PPKREG, PPKREG1 will 

allow the user to chose between uniform and geostatistical weighting for these prior 

information equations:- 

Use weights of unity or geostatistical weig hting? [u/g]:  

Note that if the unity option is selected, all weights are temporarily assigned a value of 

1.0 (this can be altered shortly through the use of a weight multiplier). Alternatively, 

selection of the geostatistical option allows weights to be calculated from the 

hydraulic property variograms assigned to this area as described in the documentation 

to PPKREG. In this case prior information equations (expressing preferred parameter 

equality) pertaining to points which are close together are weighted more heavily than 

those pertaining to points which are further apart.  

A weight multiplier can be applied to prior information weights calculated according 

to the previous prompt. A single weight multiplier can be used for all new prior 

information equations pertaining to a particular parameter family. Alternatively, prior 

information weights can be calculated in accordance with proximity of pilot points to 

data points (i.e. points at which data is available for use in the calibration process). 

PPKREG1 prompts:- 

Use uniform or data - density - dependent weight multiplier? [u/d]  

If the user requests a uniform weight multiplier, that multiplier is requested next:- 

Enter uniform weight multiplier:  



PPKREG1  241 

 

 

Alternatively, if data-density-dependent weights are requested, PPKREG1 prompts for 

the name of a ñdata coordinates fileò. This file must have at least three data columns; 

PPKREG1 reads data point eastings from the second column and data point northings 

from the third column. Thus a pilot points file and a bore coordinates file both satisfy 

the requirements of a data coordinates file. 

Note that where more than one pilot-point-based parameter family is managed by 

PPKREG1, PPKREG1 still prompts for only one data file. It is assumed that if data-

density-dependent weighting is used for both of these families, data density is the 

same for each family. 

Each prior information equation used to implement smoothing regularisation cites two 

parameters. For each one of these parameters a notional weight multiplier w is 

calculated using the equation:- 

ä=
+=

n

i

c

irbaw
1

 

where a, b, c and n are supplied by the user, and r is the distance between the pilot 

point associated with that parameter and data points cited in the data coordinates file. 

(Note that summation in the above equation takes place over the n nearest data points 

to the current pilot point; it is suggested that n be supplied as 1.) The weight multiplier 

calculated for the entire prior information equation is then calculated as the geometric 

average of the two individual parameter weight multipliers. PPKREG1ôs prompts are:- 

Enter a:  

Enter b  

Enter n:  

Enter c:  

Enter maximum allowable weight factor:  

Enter minimum allowable weight factor:  

Note the last two of the above prompts in which the user may assign a minimum and 

maximum notional weight factor to each pilot-point-based parameter; this assignment 

takes place before geometric averaging of notional parameter weight factors to 

calculate the weight factor assigned to the entire prior information equation. 

Preferred Value Regularisation 

If preferred value regularisation is selected for a particular parameter family, 

PPKREG1 prompts:- 

Use uniform preferred value, or read it from a file? [u/f]:  

If the ñuniformò option is selected, the user must provide the preferred value for all 

pilot point parameters within the parameter family in response to the prompt:- 

Enter uniform preferred value:  

Alternatively, if preferred values are to be read from a file, PPKREG1 prompts for the 

name of a pilot points file; pertinent parameter values are read from the fifth column 

of this file. Note that the first column of this file must contain pilot point names rather 

than parameter names; the latter will differ from the former where a parameter prefix 

is deployed. 



PPKREG1  242 

 

 

As in the case of smoothness regularisation, PPKREG1 next prompts:- 

Use weights of unity or geostatistical weighting? [u/g]:  

In the latter case, individual weights are not calculated at all; rather a covariance 

matrix is supplied for prior information pertaining to this parameter family. Each prior 

information equation used to implement preferred value regularisation cites a single 

parameter, assigning a preferred value to that parameter. If a covariance matrix is 

assigned to that family of prior information equations, the dimensions of that matrix 

are the same as the number of prior information equations introduced to the PEST 

control file for that parameter family by PPKREG1. The elements of the covariance 

matrix are calculated from geostatistical information contained in the regularisation 

information file, and are thus based on the variogram(s) supplied to PPK2FAC1 when 

it wrote this file. Note that the range of inter-parameter correlation is limited by the 

interpolation search distances, and number-of-pilot-point limits supplied by the user to 

PPK2FAC1 when providing kriging specifications; if it is desired that kriging and 

regularisation be governed by different variograms, or that different variables govern 

the use of these variograms when deployed for these separate processes, PPK2FAC1 

should be run twice ï once to calculate kriging factors and once to generate the 

regularisation information file to be used by PPKREG1. 

As in the case of smoothness regularisation, a uniform or data-density-dependent 

weight multiplier can be assigned to prior information introduced to the PEST control 

file by PPKREG1:- 

Use uniform or data - density - dependent weight multiplier? [u/d]:  

As is described above, data-density-dependent weight multipliers are calculated on the 

basis of data point coordinates supplied in a data coordinates file. Where geostatistical 

weighting is employed, and thus a covariance matrix is used instead of weights, each 

entry of the covariance matrix is divided by the product of the weight multipliers 

associated with the individual pilot points to which the entries pertain. In this manner 

regularisation constraints are more strongly enforced where parameter pilot points are 

closer to data points than where they are not. Where a uniform weight multiplier is 

requested, all elements of the covariance matrix are divided by the square of this 

multiplier. 

Where preferred value regularisation is employed and the geostatistical weights option 

is selected, PPKREG1 also prompts for the name of a file in which to store the 

covariance matrix for the newly introduced family of prior information equations:- 

Enter covariance matrix file for prior information:  

This file is written by PPKREG1, while the name of this file is cited in the 

ñobservation groupsò section of the new PEST control file written by PPKREG1. Note 

that where a covariance matrix is employed, weights of 1.0 are assigned to all prior 

information equations; as is documented in the PEST manual, these weights are 

ignored by PEST. 



PPKREG1  243 

 

 

Continuing PPKREG1 Execution 

For each new family of prior information equations introduced to the PEST control 

file, PPKREG1 prompts for the name of an observation group to which this prior 

information is to be assigned. This is referred to as a ñregularisation groupò by 

PPKREG1, for it is assumed that all new prior information introduced to the PEST 

control file by PPKREG1 will be used for regularisation purposes. The name must 

begin with the string ñregulò in accordance with PESTôs regularisation conventions. 

The name must also be different from that assigned to any other observation group, 

either within the existing PEST control file, or supplied to PPKREG1 for other prior 

information families during its current run. PPKREG1 also prompts:- 

Enter root name for new prior information: -  

The name of each new prior information equation introduced to the PEST control file 

by PPKREG1 is formed through appending this root name to the front of a number; 

this number is formed by counting (from 1) new prior information equations 

introduced for each family. 

PPKREG1 next prompts for the name of the PEST control file which it must write; 

this name must be different from that of the PEST control file from which it reads data 

initially. Then PPKREG1 prompts for the values of a number or regularisation 

variables; default values are supplied for other regularisation variables:- 

Enter target measurement objective function PHIMLIM:  

Enter initial regularisation weight factor WFINIT:  

Enter min. reg. weight factor WFMIN ( <Enter> if 1.0000E - 10):  

Enter max. reg. weight factor WFMAX ( <Enter> if 1.00 00E+10):  

PPKREG1 then writes the new PEST control file and any covariance matrix files 

which need to be written; then it ceases execution. 

PPKREG1 Warnings 

In the course of its execution PPKREG1 may issue a number of warnings, and prompt 

the user whether it is alright to proceed. Conditions giving rise to these warnings 

include the following:- 

1. A certain pilot point has no geostatistical linkage to any other pilot points cited 

within the regularisation information file read by PPKREG1. This can occur if a 

single pilot point exists within a certain model zone, and/or if the interpolation 

search radius supplied by the user to PPKFAC1 is too short. 

2. One or more pilot point parameters are fixed or tied. In this case PPKREG1 will 

add no prior information to the PEST control file pertaining to these pilot points. 

3. Some parameters exist within the PEST control file which are not linked to the set 

of pilot points for which regularisation information is supplied in the 

regularisation information file. 



PPKREG1  244 

 

 

Uses of PPKREG1 

Uses of PPKREG1 are the same as those of PPKREG; however it allows the 

implementation of more complex regularisation options than does PPKREG. 

PPKREG1 can be used as a replacement for PPKREG, for it contains all of the 

options that are available through this program. Through sequential use of VERTREG 

and PPKREG1 the user is able to introduce a set of complex regularisation conditions 

to a PEST control file whose parameterisation is based on one or a number of pilot 

point families occupying one or a number of model layers. Different sets of prior 

information equations introduced through this process should be assigned to different 

observation groups. When undertaking regularised inversion, the relative weighting 

assigned to each of these groups may sometimes be difficult to determine, and a trial 

and error process may be required to determine the best set of weights. The 

WTFACTOR utility (part of the PEST suite) may be useful in implementing this 

process. Alternatively, PEST may be able to adjust relative regularisation weights 

automatically; the IREGADJ variable may be of use here. PESTôs ñadaptive 

regularisationò capabilities may also be of use. 

See Also 

See also PPKREG, PPK2FAC, PPK2FAC1 and VERTREG. 



PPMDEF  245 

 

 

PPMDEF 

Function of PPMDEF 

The purpose of PPMDEF is facilitate the use of pilot point parameterisation in 

conjunction with the adjoint state process of MODFLOW. The latter employs 

ñdistributed parametersò, each of which can encompass hundreds or even thousands of 

model cells (up to all of the cells comprising the active part of a model grid in fact). 

The functionality of pilot point parameters (which are generally far fewer in number 

than model cells) is such that a single such parameter influences the hydraulic 

property assigned to many model cells through the fact that spatial interpolation is 

undertaken from pilot points to the actual finite difference grid; during the parameter 

estimation process, PEST assigns values to pilot points rather than directly to model 

cells.   

The adjoint state process of MODFLOW computes the sensitivity of a model output 

of interest to the hydraulic property of every cell comprising a distributed parameter. 

PPMDEF writes a ñdistributed-to-PEST parameter fileò for the use of ASENPROC 

whereby individual cell sensitivities are amalgamated in the correct ratios to compute 

the sensitivity of that same model output to pilot point parameters which are employed 

by PEST within the domain of the MODFLOW distributed parameter. 

Using PPMDEF 

General 

PPMDEF is employed during preparations for a PEST calibration process in which 

PEST employs pilot point parameters, but in which derivatives are computed by the 

adjoint state process of MODFLOW. The latter are computed on a cell-by-cell basis 

for all cells which collectively comprise the domain of one or a number of 

MODFLOW ñdistributed parametersò.  

Use of PPMDEF is predicated on the assumption that pilot point parameterisation is to 

be employed by PEST over the domain of a certain distributed parameter. PPMDEF 

builds a ñdistributed-to-PEST-parameter fileò for the use of ASENPROC through 

which sensitivities with respect to pilot point parameters can be computed from 

sensitivities with respect to individual cell parameters. Different sets of pilot point 

parameters can be employed over the domain of different distributed parameters (and 

different distributed parameter types). In this case, PPMDEF must be run once for 

each such distributed parameter. Each of the distributed-to-PEST parameter files built 

during these PPMDEF runs must then be supplied to ASENPROC as it runs after 

MODFLOW in the batch or script file cited in the ñderivatives command lineò section 

of the PEST control file (as distinct from the batch or script file cited in the ñmodel 

command lineò section of the PEST control file). 

As in normal pilot point usage, the first step in employing pilot points as a 

parameterisation device is to build a pilot points file, citing the locations of the actual 



PPMDEF  246 

 

 

points; the first column of this file assigns names to respective pilot points. Then 

PPK2FAC is run in order to generate kriging factors through which spatial 

interpolation is undertaken from these points to a MODFLOW-compatible real array. 

FAC2REAL is then employed as a model pre-processor to actually implement this 

interpolation; FAC2REAL is cited in a batch or script file ahead of the model, so that 

it is run by PEST on every occasion that it runs the model. Many instances of 

FAC2REAL can be run prior to the model, each of them interpolating from a different 

set of pilot points to a different MODFLOW real array. The latter can then be 

employed by MODFLOW for representation of hydraulic properties in one or more 

model layers. 

Kriging factors computed by PPK2FAC represent the contributions that different 

model cells make to the values of pilot points. (Where a parameter is log transformed 

this linear relationship is actually between the logs of the cell values and the logs of 

the pilot point parameters. This is accounted for in the software described herein, 

though it is not mentioned again in the following description.) Hence in calculating 

sensitivities with respect to pilot point parameters, these same factors can be 

employed for linking cell sensitivities to pilot point sensitivities. 

A MODFLOW distributed parameter can exist over one or many layers. For each 

model layer, cell-based hydraulic property values are obtained by multiplying the 

values found in a pertinent multiplier array by the value of the MODFLOW 

distributed parameter. PPMDEF re-writes MODFLOW input files such that:- 

1. a particular distributed parameter cites only one multiplier array in all 

MODFLOW ñparameter clustersò pertaining to that parameter, each such 

cluster representing a different model layer; 

2. the value of the distributed parameter is 1.0. 

The repercussions of this strategy are that the values assigned to cells of the multiplier 

array automatically become hydraulic properties associated with that distributed 

parameter. Also, if a distributed parameter spans more than one layer, then property 

values in different layers are the same. Note that the number of cells spanned by a 

particular distributed parameter need not be the same in different model layers, this 

being governed by the zonation array assigned to each such layer. However where a 

particular cell belongs to the same distributed parameter in more than one layer, then 

it will be assigned the same value in these different layers. If this is not desired, then 

different distributed parameters should be assigned to different model layers. 

Another repercussion of the above strategy is that FAC2REAL must be asked to 

assign values to multiplier arrays on the basis of pilot points, rather than directly to 

arrays which pertain to respective hydraulic properties. Preferably these multiplier 

arrays should be made easily accessible to FAC2REAL by citing them using 

OPEN/CLOSE statements within the MODFLOW multiplier file. (Note also that the 

ñcolrowò variable in the settings file settings.fig should be set to ñnoò.) 



PPMDEF  247 

 

 

At present, only distributed parameter types employed by the LPF package can be 

handled by PPMDEF. Functionality for the handling of other parameter types can be 

added in the future if desired. 

Running PPMDEF 

PPMDEF commences execution with the prompt:- 

 Enter name of MODFLOW name file:  

PPMDEF then proceeds to read the nominated MODFLOW name file. It will cease 

execution with an appropriate error message if either an LPF package input file, a 

discretisation file, a BASIC package input file, or a multiplier file is not cited in the 

name file.  

(Note that in normal MODFLOW operation, it is not necessary that a multiplier file be 

cited in a name file, for all MODFLOW parameter multiplier arrays can be assigned 

the string ñNONEò. As will be described below, PPMDEF will create a reference to a 

single multiplier array for all incidences of a single distributed parameter. Even if an 

existing multiplier file is empty, this file must still be cited in the MODFLOW name 

file so that PPMDEF knows the name of the file in which it should reference its new 

multiplier array. Therefore this file will not be empty after PPMDEF has finished 

execution). 

Next PPMDEF prompts:- 

 Enter name of interpolation factor file:  

 Is this a formatted or unformatted file? [f/u]:  

This file will have been written by PPK2FAC. As well as holding kriging factors 

previously computed by PPK2FAC, it also holds the name of the pilot points file for 

which these factors were computed. This file must also be present within the directory 

from which PPMDEF is run for, as will be discussed shortly, PPMDEF needs to read 

this file. 

As explained in the documentation to PPK2FAC, interpolation factor files can be 

formatted or unformatted. (Use of formatted files is recommended as these are 

generally quickly readable and this avoids the problems that are sometimes 

encountered with unformatted file incompatibility.) 

PPMDEFôs next prompt is:- 

 To what MODFLOW distributed parameter does this pertain?  

As presently programmed, this distributed parameter must reside in an LPF package 

input file. It can be associated with one or more clusters citing one or more model 

layers. 

As will be discussed below, PPMDEF writes part of a PEST control file in which pilot 

point parameter data is represented. This control file fragment can form the basis for 

construction of a complete PEST control file, and/or can be manually combined with 

other PEST control file building blocks (such as are produced by the MKMHOBS 

utility for example) by cutting and pasting to form such a complete PEST control file. 



PPMDEF  248 

 

 

Before writing the ñparameter dataò section of this PEST control file fragment, 

PPMDEF needs to know the following information pertaining to pilot point 

parameters:- 

 Enter lower bou nd for pilot point parameters:  

 Enter upper bou nd for pilot point parameters:  

 Enter initial value for pilot point parameters:  

Next PPMDEF prompts:- 

 Enter name for distributed - to - PEST- parameter  file:  

This is the file which ASENPROC must read as it runs behind the model as a 

postprocessor, converting distributed parameter sensitivities to pilot point 

sensitivities. Note that ASENPROC may read many such files. Note also that 

ASENPROC post-processing is only required when the ñderivatives command lineò 

version of the model is run, and not when the ñmodel command lineò version of the 

model is run. 

Finally PPMDEF prompts:- 

 Enter name for PEST buildin g block file:  

This is the file to which PPMDEF writes pilot point parameter data, ready for 

inclusion in a PEST control file. 

After it has received all of the above information, PPMDEF performs the following 

tasks. 

1. It first reads the discretisation file in order to establish the dimensions of the 

model grid. 

2. It reads MODFLOW ibound arrays from the BASIC package input file. In 

writing its distributed-to-PEST parameter file PPMDEF ensures that no 

inactive cells are employed in computation of pilot point sensitivities. (This 

would not really matter as inactive cells will have a sensitivity of zero. 

However recognition of inactive cell status may generate savings in the length 

of the distributed-to-PEST parameter file which PPMDEF writes, and in 

ASENPROC processing time.) 

3. It reads the LPF package input file, ensuring that the user-nominated 

distributed parameter is present in this file.  

4. It reads zone arrays assigned to the distributed parameter in order to ascertain 

the domain of this parameter. 

5. It copies the existing multiplier file to a ñsafe-keepingò multiplier file named 

file.kn where file is the name of the existing multiplier file and n is the first 

available integer. 

6. It modifies the existing multiplier file, removing arrays that are not required by 

it (because they were previously employed by the nominated distributed 

parameter), and writes a new array pertaining to all clusters (each of which 

pertains to a separate model layer) in which the nominated distributed 



PPMDEF  249 

 

 

parameter lies. It provides this array with a name which is the same as that of 

the nominated distributed parameter. (The user should ensure that no other 

multiplier arrays are provided with this same name.) 

7. It replaces any remaining arrays with references to external arrays, and then 

writes these arrays to pertinent files. These files are named multname_mult.ref 

where multname is the name of the re-written multiplier array. This makes 

processing of the multiplier file during later PPMDEF runs easier. 

8. After copying the existing LPF package input file to file.kn where file is its 

original name and n is the first available integer, it modifies this file by 

providing the distributed parameter with a value of 1.0, and referencing the 

single new multiplier array in each cluster pertaining to the distributed 

parameter. 

9. It writes a distributed-to-PEST-parameter file for the use of ASENPROC from 

which pilot point sensitivities can be computed from cell sensitivities. In doing 

this it assigns names to pilot point parameters. These are formed by affixing 

the name of each pilot point (as read from the interpolation factor file) to the 

end of the name of the distributed parameter; however the name of the latter is 

shortened so that the ultimate name of the longest parameter is no more than 

12 characters in length. 

10.  It writes a PEST template file of the pilot points file in which parameter 

spaces containing parameter names replaces pilot point values in the fifth 

column of this file. This file is immediately ready for the use of PEST in 

formulation of the pilot-point-based inverse problem. The name of the file is 

param.tpl where param is the name of the distributed parameter. 

11. It writes a PEST ñbuilding-block fileò containing a ñparameter groupsò, 

ñparameter dataò and ñmodel input/outputò section. The name of the pilot 

points file corresponding to the template file is assumed to be param.pts where 

param is the name of the distributed parameter. 

12. It writes a FAC2REAL keyboard input file named fac2real_param.in where 

param is the name of the distributed parameter. The command:- 

fac2real < fac2real_ param .in  

should be placed in the model batch file (in both the ñderivatives command 

lineò and ñmodel command lineò versions) ahead of MODFLOW. This will 

ensure that current pilot point values (as recorded in the file param.pts written 

by PEST using the template file param.tpl) are used in spatial interpolation to 

the MODFLOW multiplier array assigned to the param distributed parameter. 

13. It writes a short message to the screen reminding the user of the necessity to 

employ FAC2REAL in the model, and then ceases execution. 

It is important to note that, as stated above, PPMDEF removes multiplier arrays that 

previously belonged to the nominated distributed parameter and that are not required 




